Skip to main content
Log in

Evaluation of chemical composition, antioxidant, antibiofilm and antibacterial potency of essential oil extracted from gamma irradiated clove (Eugenia caryophyllata) buds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The efficacy of γ-rays is known as a method for decontamination of food, herbs and spices. In the present study, clove buds (CB) were irradiated at 10 kGy by 60Co irradiator. Essential oils (EOs) recovered from un-irradiated CB and irradiated (ICB) were evaluated for their chemical composition by GC–MS, antioxidant, antibiofilm and antibacterial activity. The minimum inhibitory concentration (MIC) and growth curves against four tested multi-drug resistant (MDR) bacterial pathogens; S. aureus, B. cereus, E. coli and K. pneumoniae were also evaluated. The liberation of cellular contents, as well as the alterations in cell membrane permeability, together with ultrastructural changes in the pathogen morphology, have been evaluated utilizing spectrophotometer, scanning electron microscope (SEM) and energy dispersive X-ray fluorescence spectrometry (EDXFS). Results revealed that EOs recovered from ICB leads to a rise in the phenolic and flavonoid contents by 3.82 and 3.44 mg/g of oil, respectively. Antioxidant potency was elevated by 6.63% for ICB recovered EOs compared to EOs from CB. Antibiofilm and antibacterial activities were improved against all tested MDR pathogens accompanied by decline in their cell growth. The MIC of EOs recovered from ICB raised up the release of bacterial intracellular proteins and DNA/RNA contents significantly (p < 0.05) in time dependent manner. The leakage of bacterial contents had been supported by the increase in the release of C, O, N, P, Mg with presence of new elements (Ca and S) in S. aureus treated with MIC of EOs recovered from ICB. Moreover, cell wall/membrane damages and shrinkage in S. aureus cells was clearly observed in SEM images. This study concluded that γ-rays at dose 10 kGy has a significant potential to stimulate antioxidant, antibiofilm and antibacterial potency of EOs recovered from CB due to increase in phenolic and flavonoid contents. This could improve the uses of EOs recovered from ICB will support the efforts to find a natural and more potent antioxidant, antibiofilm, and antibacterial against MDR pathogens, which is useful in food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.B. Dehsheikh, M.M. Sourestani, P.B. Dehsheikh, J. Mottaghipisheh, S. Vitalini, M. Iriti, Mini Rev. Med. Chem. 20, 958–974 (2020). https://doi.org/10.2174/1389557520666200122144703

    Article  CAS  PubMed  Google Scholar 

  2. B.S. Jugreet, S. Suroowan, R.R.K. Rengasamy, M.F. Mahomoodally, Trends Food Sci. Technol. 101, 89–105 (2020). https://doi.org/10.1016/j.tifs.2020.04.025

    Article  CAS  Google Scholar 

  3. D.H. Abou Baker, M. Al-Moghazy, A.A. ElSayed, Bioorg. Chem. 95, 103559 (2020). https://doi.org/10.1016/j.bioorg.2019.103559

    Article  CAS  PubMed  Google Scholar 

  4. Y. El Ghallab, A. Al Jahid, J.J. Eddine, A.A. Said, L. Zarayby, S. Derfoufi, Orient. Pharm. Exp. Med. 20(2), 153–158 (2020)

    Article  CAS  Google Scholar 

  5. S. Amariei, S. Ciornei, E. Sanduleac, Stefan Cel Mare Univ. Suceava Romania (XII) 2, 143–147 (2013)

  6. World Food Programme, Fumigation. [Online]. Available: http://foodqualityandsafety.wfp.org/fumigation 25 July (2017)

  7. J.L. Daft, Sci. Total Environ. 100, 501–518 (1991). https://doi.org/10.1016/0048-9697(91)90390-Z

    Article  CAS  PubMed  Google Scholar 

  8. H. Ahari, M. Alineja Dizaj, S. Paidari, A.A. Anvar, Iran. J. Aquat. Anim. Health 2(2), 88–96 (2016). https://doi.org/10.18869/acadpub.ijaah.2.2.88

    Article  Google Scholar 

  9. E. Groth, Available https://organic-center.org/reportfiles/IrradiationReport.pdf (2017)

  10. E. Araby, H.G. Nada, S.A. Aboul El-Nour, A. Hammad, BMC Microbiol. 20, 186 (2020). https://doi.org/10.1186/s12866-020-01868-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E.M. Gaspar, J.C. Santana, P.M. Santos, J.P. Telo, A.J. Vieira, J. Sci. Food Agric. 99, 1668–1674 (2019). https://doi.org/10.1002/jsfa.9351

    Article  CAS  PubMed  Google Scholar 

  12. British Pharmacopoeia Commission L (United K eng. British Pharmacopoeia, 1993). https://agris.fao.org/agris-search/search.do?recordID=XF2015028047. Accessed 2 Apr 2021.

  13. B.P. Ezhilan, R. Neelamegam, Pharmacog. Res. 4, 11–14 (2012). https://doi.org/10.4103/0974-8490.91028

    Article  CAS  Google Scholar 

  14. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  15. D. Marinova, F. Ribarova, M. Atanassova, J. Univ. Chem. Technol. Met. 40(3), 255–260 (2005)

    CAS  Google Scholar 

  16. S. Salmanian, A.R. Sadeghi Mahoonak, M. Alami, M. Ghorbani, J. Agric. Sci. Technol. 16, 343–354 (2014)

    Google Scholar 

  17. C.L.S.I. Clinical and Laboratory Standards Institute. 7th informal supplement. CLSI document M100S.‏ (2017)

  18. S.Y. El-Tablawy, E. Araby, IOSR J. Pharm. Biol. Sci. 12, 63–71 (2017). https://doi.org/10.9790/3008-1203016371

    Article  Google Scholar 

  19. A. Barapatre, K.R. Aadil, H. Jha, Bioresour. Bioprocess. 3, 8–20 (2016). https://doi.org/10.1186/s40643-016-0083-y

    Article  Google Scholar 

  20. M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  21. C.F. Carson, B.J. Mee, T.V. Riley, Antimicrob. Agents Chemother. 46, 1914–1920 (2002). https://doi.org/10.1128/AAC.46.6.1914-1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K. McKenzie, M. Maclean, M.H. Grant, P. Ramakrishnan, S.J. MacGregor, J.G. Anderson, Microbiol (United Kingdom) 162, 1680–1688 (2016). https://doi.org/10.1099/mic.0.000350

    Article  CAS  Google Scholar 

  23. V.K. Bajpai, S.M. Al-Reza, U.K. Choi, J.H. Lee, S.C. Kang, Food Chem. Toxicol. 47, 1876–1883 (2009). https://doi.org/10.1016/j.fct.2009.04.043

    Article  CAS  PubMed  Google Scholar 

  24. B. Sazesh, M. Goli, J. Food Process Preserv. 44(8), e14563 (2020). https://doi.org/10.1590/fst.60820

    Article  CAS  Google Scholar 

  25. F. Jalalizand, M. Goli, J. Food Meas. Charact. 15(1), 495–507 (2021). https://doi.org/10.1007/s11694-020-00659-y

    Article  Google Scholar 

  26. W.H.O. World Health Organization, Google Books (WHO, Geneva, 1999)

    Google Scholar 

  27. A.G. Chmielewski, W. Migda, Nukleonika 50, 179–184 (2005)

    CAS  Google Scholar 

  28. A.A. Aly, R.W. Maraei, H.G.M. Ali, JAOCS J. Am. Oil Chem. Soc. 93, 397–404 (2016). https://doi.org/10.1007/s11746-015-2781-6

    Article  CAS  Google Scholar 

  29. A.H. Alshawi, Food Technol. 10(9) Ver. III, 01–07 (2016). https://doi.org/10.9790/2402-1009030107

  30. H.S. EL-Beltagi, F. Dhawi, A.A. Aly, A.E. EL-Ansary, Not. Bot. Horti. Agrobot. Cluj-Napoca 48, 2114–2133 (2020). https://doi.org/10.15835/nbha48412115

    Article  CAS  Google Scholar 

  31. M. Suhaj, J. Horváthová, J. Food Nutr. Res. 46, 112–122 (2007)

    CAS  Google Scholar 

  32. M.M. Akbar Boojar, Adv. Pharm. Bull. 10, 13–9 (2020). https://doi.org/10.15171/apb.2020.002

    Article  CAS  Google Scholar 

  33. M.S. Daneshzadeh, H. Abbaspour, L. Amjad, A.M. Nafchi, J. Food Meas. Charact. 14(2), 708–715 (2020). https://doi.org/10.1007/s11694-019-00317-y

    Article  Google Scholar 

  34. H. Jalali, S. Ziaolhagh, A. Mohammadi Nafchi, M. KazemiAlamut, Electr. J. Food Process Preserv. 11(1), 33–47 (2019)

    Google Scholar 

  35. M. Parsaei, M. Goli, H. Abbasi, Food Sci. Nutr. 00, 1–6 (2018). https://doi.org/10.1002/fsn3.524

    Article  CAS  Google Scholar 

  36. Z. Nahal, M. Goli, J. Food Meas. Charact. 14, 3216–3226 (2020). https://doi.org/10.1007/s11694-020-00567-1

    Article  Google Scholar 

  37. A. Leila, Z. Nafiseh, N. Samira, P. Saeed, M. Goli, A. Hajar, J. Food Meas. Charact. 15, 4438–4445 (2021). https://doi.org/10.1007/s11694-021-00991-x

    Article  Google Scholar 

  38. F. Fatemi, S. Dini, M.B. Rezaei, A. Dadkhah, R. Dabbagh, S. Naij, J. Essent. Oil Res. 26, 97–104 (2014). https://doi.org/10.1080/10412905.2013.871670

    Article  CAS  Google Scholar 

  39. I. Gülçin, M. Elmastaş, H.Y. Aboul-Enein, Arab. J. Chem. 5, 489–499 (2012). https://doi.org/10.1016/j.arabjc.2010.09.016

    Article  CAS  Google Scholar 

  40. S. Burt, J. Int. Food Microbiol. 94, 223–253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  41. Food and Drug Administration (FDA), U.S. Department of Health and Human Services Food and Drug Administration Center for Veterinary Medicine (2007)

  42. N. Khorshidian, M. Yousefi, E. Khanniri, A.M. Mortazavian, Innov. Food Sci. Emerg. Technol. 45, 62–72 (2018). https://doi.org/10.1016/j.ifset.2017.09.020

    Article  CAS  Google Scholar 

  43. H. Nada, S. Hagag, S. El-Tablawy, Egypt. J. Radiat. Sci. Appl. 31, 185–193 (2019). https://doi.org/10.21608/ejrsa.2018.5656.1054

    Article  Google Scholar 

  44. S. Phothisuwan, W. Preechatiwong, N. Matan, J. Food Process Preserv. 44, e14794 (2020). https://doi.org/10.1111/jfpp.14794

    Article  CAS  Google Scholar 

  45. S. Bhavaniramya, S. Vishnupriya, M.S. Al-Aboody, R. Vijayakumar, D. Baskaran, Grain Oil Sci Technol. 2(2), 49–55 (2019). https://doi.org/10.1016/j.gaost.2019.03.001

    Article  Google Scholar 

  46. B. Latifah-Munirah, W.H. Himratul-Aznita, N. Mohd Zain, Front. Life Sci. 8, 231–240 (2015). https://doi.org/10.1080/21553769.2015.1045628

    Article  CAS  Google Scholar 

  47. J.D.F. Silvestri, N. Paroul, E. Czyewski, L. Lerin, I. Rotava, R.L. Cansian et al., Rev. Ceres 57, 589–594 (2010). https://doi.org/10.1590/s0034-737x2010000500004

    Article  CAS  Google Scholar 

  48. M. Radünz, M.L.M. da Trindade, T.M. Camargo, A.L. Radünz, C.D. Borges, E.A. Gandra et al., Food Chem. 276, 180–186 (2019). https://doi.org/10.1016/j.foodchem.2018.09.173

    Article  CAS  PubMed  Google Scholar 

  49. Y. Fu, Y. Zu, L. Chen, X. Shi, Z. Wang, S. Sun et al., Phyther. Res. 21, 989–994 (2007). https://doi.org/10.1002/ptr.2179

    Article  Google Scholar 

  50. Y.-G. Kim, J.-H. Lee, G. Gwon, S.-I. Kim, J.G. Park, J. Lee, Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep36377

    Article  CAS  Google Scholar 

  51. S. Arokiyaraj, R. Bharanidharan, P. Agastian, H. Shin, Chem. Cent. J. 12, 105 (2018). https://doi.org/10.1186/s13065-018-0476-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Y. Wu, J. Bai, K. Zhong, Y. Huang, H. Qi, Y. Jiang et al., Molecules 21, 1084 (2016). https://doi.org/10.3390/molecules21081084

    Article  CAS  PubMed Central  Google Scholar 

  53. K. Wongsawan, W. Chaisri, S. Tangtrongsup, R. Mektrirat, Pathogens 9, 14 (2019). https://doi.org/10.3390/pathogens9010014

    Article  CAS  PubMed Central  Google Scholar 

  54. H.K. Gupta, S. Shrivastava, R. Sharma, mBio 8, e01388-17 (2017). https://doi.org/10.1128/mBio.01388-17

    Article  PubMed  PubMed Central  Google Scholar 

  55. D.C. Dominguez, Mol. Microbiol. 54, 291–297 (2004). https://doi.org/10.1111/j.1365

    Article  CAS  PubMed  Google Scholar 

  56. T.A. Seiflein, J.G. Lawrence, J. Bacteriol. 183, 33–46 (2001). https://doi.org/10.1128/JB.183.1.336-346.2001

    Article  Google Scholar 

  57. G. Tan, J. Yang, T. Li, J. Zhao, S. Sun, X. Li, J. et al., Appl. Environ. Microbiol. 83, 67–17 (2017)

Download references

Acknowledgements

The authors would like to thank the Egyptian Atomic Energy Authority and October University for Modern Science and Art (MSA), Faculty of Biotechnology, Egypt for supporting and funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina A. Aly.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nada, H.G., Mohsen, R., Zaki, M.E. et al. Evaluation of chemical composition, antioxidant, antibiofilm and antibacterial potency of essential oil extracted from gamma irradiated clove (Eugenia caryophyllata) buds. Food Measure 16, 673–686 (2022). https://doi.org/10.1007/s11694-021-01196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01196-y

Keywords

Navigation