Skip to main content
Log in

Effect of extraction solvents on total phenolic compound, lipid peroxidation, antioxidant and cytotoxic activity of leaves of Rubus armeniacus (Himalayan blackberry)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objectives of this study were to determine effect of different extraction solvents on the total phenolic (TPC), flavonoid (TFC) and tannin contents (CTC) of Rubus armeniacus (Himalayan blackberry) dried leaves. Moreover, DPPH radical scavenging activity, reducing power, and β-carotene bleaching test were carried out to evaluate the antioxidant activity of the extracts. The oxidative stability of soybean oil (SBO) was also evaluated after addition of different extracts. The 80% methanolic and hexane extract of R. armeniacus had the highest and lowest content of TPC, TFC and CTC, respectively. The chlorogenic acid constituted the major component of the methanolic extract in HPLC analysis. It was observed that the 80% methanolic extract had the highest antioxidant activity. The oxidative stability of SBO was according to findings of antioxidant power of the extract. In conclusion, leaves of R. armeniacus can be used in food and pharmaceutical systems as a source of natural antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

Code availability

Not applicable.

References

  1. D.M. Micić, S.B. Ostojić, M.B. Simonović, G. Krstić, L.L. Pezo, B.R. Simonović, Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochim. Acta 601, 39–44 (2015)

    Article  CAS  Google Scholar 

  2. M. Grootveld, B.C. Percival, J. Leenders, P.B. Wilson, Potential adverse public health effects aforded by the ingestion of dietary lipid oxidation product toxins: significance of fried food sources. Nutrients 12, 974 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  3. S. Grosshagauer, R. Steinschaden, M. Pignittera, Strategies to increase the oxidative stability of cold pressed oils. LWT Food Sci. Technol. 106, 72–77 (2019)

    Article  CAS  Google Scholar 

  4. EFSA, Scientific opinion on the re-evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J. 10, 2588 (2012)

    Google Scholar 

  5. European Commission, Commission regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 295, 1–177 (2011)

    Google Scholar 

  6. European Food Safety Authority (EFSA), Scientific opinion on the re-evaluation of butylated hydroxyanisole-BHA (E 320) as a food additive. EFSA J. 9, 2392 (2011)

    Article  CAS  Google Scholar 

  7. S.C. Lourenço, M. Moldão-Martins, V.D. Alves, Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24, 4132 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  8. F. Blasi, L. Cossignani, An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes 8, 956 (2020)

    Article  CAS  Google Scholar 

  9. R.M. Potter, M.P. Dougherty, W.A. Halteman, M.E. Camire, Characteristics of wild blueberry-soy eeverages. LWT-Food Sci. Technol. 40(5), 807–814 (2007)

    Article  CAS  Google Scholar 

  10. V.R. de Souza, P.A.P. Pereira, T.L.T. da Silva, L.C. de Oliveira Lima, R. Pio, F. Queiroz, Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 156, 362–368 (2014)

    Article  PubMed  CAS  Google Scholar 

  11. S.H. Nile, S.W. Park, Edible berries: bioactive components and their effect on human health. Nutrition 30, 134–144 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. A.V. Pavlović, A. Papetti, D.C. Dabic Zagorac, U.M. Gašić, D.M. Mišić, Z.L. Tešić, Natić MM, Phenolics composition of leaf extracts of raspberry and blackberry ultivars grown in Serbia. Ind. Crops Prod. 87, 304–314 (2016)

    Article  CAS  Google Scholar 

  13. R.G. Melkadze, N.S. Chikovani, E. Kakhniashvili, Characteristics of thecomposition of caucasian blackberry (Rubus caucasicus L.) leaves as a rawmaterial for tea production. Appl. Biochem. Microbiol. 44, 647–651 (2008)

    Article  CAS  Google Scholar 

  14. S. Martini, C. D’Addario, A. Colacevich, S. Focardi, F. Borghini, A. Santucci, N. Figura, C. Rossi, Antimicrobial activity against Helicobacter pylori strainsand antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolatedcompounds. Int. J. Antimicrob. Agents 34, 50–59 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. J. Oszmia´nski, A. Wojdyło, P. Nowicka, M. Teleszko, T. Cebulak, M. Wolanin, Determination of phenolic compounds and antioxidant activity in leavesfrom wild Rubus L. species. Molecules 20, 4951–4966 (2015)

    Article  CAS  Google Scholar 

  16. S.Y. Wang, H.S. Lin, Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 48, 140–146 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. L. Tavares, I. Figueira, D. Macedo, G.J. McDougall, M.C. Leitao, H.L.A. Vieira, D. Stewart, P.M. Alvesa, R.B. Ferreira, C.N. Santos, Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal gestion. Food Chem. 131, 1443–1452 (2012)

    Article  CAS  Google Scholar 

  18. J. Dai, J.D. Patel, R.J. Mumper, Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 10, 258–265 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. J.S. Caplan, J.A. Yeakley, Rubus armeniacus (Himalayan blackberry) occurrence and growth in relation to soil and light conditions in Western Oregon. Northwest Sci. 80(1), 9–17 (2006)

    Google Scholar 

  20. M.M. Karimkhani, D. Salarbashi, S. Sanjari Sefidy, A. Mohammadzadeh, Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex C.K. Schneider. J. Food Meas. Charact. 13, 357–367 (2019)

    Article  Google Scholar 

  21. D. Salarbashi, B.S.F. Bazzaz, M.M. Karimkhani, Z.S. Noghabi, F. Khanzadeh, A. Sahebkar, Oil stability index and biological activities of Achillea biebersteinii and Achillea wilhelmsii extracts as influenced by various ultrasound intensities. Ind. Crop Prod. 55, 163–172 (2014)

    Article  CAS  Google Scholar 

  22. E. Hayouni, M. Abedrabba, M. Bouix, M. Hamdi, The effect of solvents and extraction method on the phenolic compounds contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extract. Food Chem. 105, 1126–1134 (2007)

    Article  CAS  Google Scholar 

  23. D. Khlifi, R.M. Sghaier, S. Amouri, D. Laouini, M. Hamdi, J. Bouajila, Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 55, 202–208 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. M.M. Karimkhani, R. Shaddel, M.H.H. Khodaparast, M. Vazirian, S. Piri-Gheshlaghi, Antioxidant and antibacterial activity of safflower (Carthamus tinctorius L.) extract from four different cultivars. Qual. Assur. Saf. Crops  Foods 8(4), 565–574 (2016)

    Article  CAS  Google Scholar 

  25. S.M. Haghighi, F. Tafvizi, A. Mirzaie, Encapsulation of artemisia scoparia extract in chitosan-myristate nanogel with enhanced cytotoxicity and apoptosis against hepatocellular carcinoma cell line (Huh-7). Ind. Crops Prod. 155, 112790 (2020)

  26. M. Raeisi, M. Hashemi, M. Aminzare, A. Afshari, T. Zeinali, B. Jannat, An investigation of the effect of Zataria multiflora Boiss and Mentha piperitaessential oils to improve the chemical stability of minced meat. Vet. World 11(12), 1656–1662 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C.D. Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 30, 3268–3295 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22(3), 296–302 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, J. Sochor, Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 16, 24673–24706 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Metrouh-Amir, C.M. Duarte, F. Maiza, Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind. Crop Prod. 67, 249–256 (2015)

    Article  CAS  Google Scholar 

  31. C. Vasco, J. Ruales, A. Kamal-Eldin, Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 111, 816–823 (2008)

    Article  CAS  Google Scholar 

  32. Q. Zafra-Rojas, N. Cruz-Cansino, A. Delgadillo-Ramírez, E. Alanís-García, J. Añorve-Morga, A. Quintero-Lira, A. Castañeda-Ovando, E. Ramírez-Moreno, Organic acids, antioxidants, and dietary fiber of Mexican blackberry (Rubus fruticosus) residues cv. tupy. J. Food Qual. 2018(5950761), 9 (2018)

    Google Scholar 

  33. D. Samec, J.P. Zegarac, Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures comparison with blackberries, white and red grapes. Sci. Hortic. 131, 15–21 (2011)

    Article  CAS  Google Scholar 

  34. N.A. Shamsudin, A. Matawali, J.A. Gansau, Comparison of antioxidant activity and phytochemical content of borneo wild berry, Rubus fraxinifolius (Rogimot). Trans. Sci. Technol. 6(1), 36–41 (2019)

    Google Scholar 

  35. M.N. Maillard, M.H. Soum, P. Boivin, C. Berset, Antioxidant activity of barley and malt: relationship with phenolic content. LWT - Food Sci. Technol. 29(3), 238–244 (1996)

    Article  CAS  Google Scholar 

  36. M. Bordoloi, P.K. Bordoloi, P.P. Dutta, V. Singh, S. Nath, B. Narzary, P.D. Bhuyan, P.G. Rao, I.C. Barua, Studies on some edible herbs: antioxidant activity, phenolic content, mineral content and antifungal properties. J. Funct. Food 23, 220–229 (2016)

    Article  CAS  Google Scholar 

  37. M. Zorzi, F. Gai, C. Medana, R. Aigotti, S. Morello, P.P. Giorgio, Bioactive compounds and antioxidant capacity of small berries. Foods 9, 623 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  38. V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: impact on human health. Pharmacol. Rev. 4, 118–126 (2010)

    Article  CAS  Google Scholar 

  39. J.C. Barreira, I.C. Ferreira, M.B.P. Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 107(3), 1106–1113 (2008)

    Article  CAS  Google Scholar 

  40. N.M. Hassimoto, M.I. Genovese, F.M. Lajolo, Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 53, 2928–2935 (2005)

    Article  CAS  Google Scholar 

  41. E. Niki, Y. Yoshida, Y. Saito, N. Noguchi, Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 338(1), 668–676 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. H.A. Zahran, Z. Najafi, Enhanced stability of refined soybean oil enriched with phenolic compounds of olive leaves. Egypt J. Chem. 63, 215–224 (2020)

    Article  Google Scholar 

  43. N.N.M. Phuong, T.T. Le, M.V.T. Nguyen, J. Van Camp, K. Raes, Antioxidant activity of rambutan (Nephelium lappaceum L.) peel extract in soybean oil during storage and deep frying. Eur. J. Lipid Sci. Technol. 122, 1900214 (2020)

    Article  CAS  Google Scholar 

  44. A. Afshari, S.Z. Sayyed-Alangi, Antioxidant effect of leaf extracts from Cressa cretica against oxidation process in soybean oil. Food Sci. Nutr. 5, 324–333 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. M. Kozłowska, E. Gruczyńska, Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chem. Pap. 72, 2607–2615 (2018)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Ferdowsi University of Mashhad.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MMK: corporates in design of study, performed the analysis and drafting the manuscript; AJ: supervised the study and editing the manuscript; TZ: corporates in design of study, critical analysis of the data and drafting the manuscript. BF: revised and editing the manuscript.

Corresponding authors

Correspondence to Abdollah Jamshidi or Tayebeh Zeinali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study performed according to international ethical guidelines.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM1

Supplementary file1 (DOC 17kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimkhani, M.M., Jamshidi, A., Zeinali, T. et al. Effect of extraction solvents on total phenolic compound, lipid peroxidation, antioxidant and cytotoxic activity of leaves of Rubus armeniacus (Himalayan blackberry). Food Measure 15, 5725–5734 (2021). https://doi.org/10.1007/s11694-021-01135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01135-x

Keywords

Navigation