Skip to main content
Log in

Characterization of physico-chemical, textural, phytochemical and sensory proprieties of Italia raisins subjected to different drying conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Raisins are commonly found in the Mediterranean diet due to their delicious taste and their nutrient richness. This study evaluated the effect of drying at three temperatures (50 to 70 °C) on the physico-chemical, textural, phytochemical and sensory proprieties of Italia raisins subjected to different pre-treatments: control samples (not treated, C), dipping berries in sodium hydroxide (SH) and raisins obtained by a traditional method (Trad). According to physico-chemical analyses, drying at 60 °C allowed to obtain raisins with attractive color, high contents in protein, total soluble solids and titratable acidity, but lower pH values. The textural parameters of Italia raisins are assessed for the first time. Our findings demonstrated that the firmer raisins were obtained with Trad pre-treatment at 70 °C. Phytochemical results were dependent on each drying condition. It seems that Trad at 60 °C favored coutaric and fertaric acids, quercetin-3-O-glucoside and rutin, Trad at 70 °C gallic acid and total phenolic content and no pre-treatment (C) at 50 °C the flavanol monomers and procyanidin B2. Regarding sensory analysis, panelists scored Italia raisins as sweet, firm, sticky, a slight acid, with the abundance of dried plum/red berries, fig/hay/tobacco and caramel/vanilla aromas. The results revealed that from the same grape, it is possible to get raisins with different characteristics according to each drying condition, that suggests consequently to meet different consumer markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Mencarelli, A. Bellincontro, G. DiRenzo, Grape Post-Harvest Operations (FAO, Italy, 2005)

    Google Scholar 

  2. H. Zemni, A. Sghaier, R. Khiari, S. Chebil, H. Ben Ismail, R. Nefzaoui, Z. Hamdi, S. Lasram, Food Bioprocess Technol. 10, 479–490 (2017). https://doi.org/10.1007/s11947-016-1837-43

    Article  CAS  Google Scholar 

  3. M. Jeszka-skowron, B. Czarczyńska-Goślińska, in The mediterranean diet, 2nd edn., ed. by V.R. Preedy, R.R. Watson (Academic Press, Cambridge, 2020), pp. 229–238

    Chapter  Google Scholar 

  4. F. Ghrairi, L. Lahouar, E.A. Amira, F. Brahmi, A. Ferchichi, L. Achour, S. Said, Crops Prod. 43, 73–77 (2013). https://doi.org/10.1016/j.indcrop.2012.07.008

    Article  CAS  Google Scholar 

  5. Centre du Commerce International (2019) Liste des marchés fournisseurs pour un produit importé par la Tunisie, Metadata Produit: 0806 Raisins, frais ou secs https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm. Accessed 12 Mar 2020

  6. C. Venkitasamy, L. Zhao, R. Zhang, Z. Pan, Grapes, in Integrated processing technologies for food and agricultural by-products. ed. by Z. Pan, R. Zhang, S. Zicari (Academic Press, Cambridge, 2019). https://doi.org/10.1016/B978-0-12-814138-0.00006-X

    Chapter  Google Scholar 

  7. D.R. Pangavhane, R.L. Sawhney, Energy Convers. Manag. 43, 45–61 (2002). https://doi.org/10.1016/S0196-8904(01)00006-1

    Article  Google Scholar 

  8. P.A. Michailidis, M.K. Krokida, in Conventional and advanced food processing technologies. ed. by S. Bhattacharya (Wiley, UK, 2014), pp. 1–32. https://doi.org/10.1002/9781118406281.ch1

    Chapter  Google Scholar 

  9. R. Khiari, H. Zemni, D. Mihoubi, Food Rev. Int. 35, 246–298 (2019). https://doi.org/10.1080/87559129.2018.1517264

    Article  CAS  Google Scholar 

  10. V.L. Fulgoni, J. Painter, A. Carughi, Food Nutr. Res. (2017). https://doi.org/10.1080/16546628.2017.1378567

    Article  PubMed  PubMed Central  Google Scholar 

  11. G. Williamson, A. Carughi, Nutr. Res. 30, 511–519 (2010). https://doi.org/10.1016/j.nutres.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  12. G. Adiletta, P. Russo, W. Senadeera, M. Di Matteo, J. Food Eng. 172, 9–18 (2016). https://doi.org/10.1016/j.jfoodeng.2015.06.031

    Article  CAS  Google Scholar 

  13. M. Grncarevic, J.S. Hawker, J. Sci. Food Agric. 22, 270–272 (1971). https://doi.org/10.1002/jsfa.2740220514

    Article  Google Scholar 

  14. AOAC, Official Methods of Analysis of AOAC, International, 17th edn. (Association of Analytical Communities, Gaithersburg, 2000)

    Google Scholar 

  15. J. Carranza-Concha, M. Benlloch, M.M. Camacho, N. Martínez-Navarrete, Food Bioprod. Process. 90, 243–248 (2012). https://doi.org/10.1016/j.fbp.2011.04.002

    Article  CAS  Google Scholar 

  16. J.-M. Souquet, F. Veran, C. Mané, V. Cheynier. In: XXIII International Conference on Polyphenols Winipeg (Manitoba, Canada, 2006), Groupe Polyphénols, Bordeaux, France, pp. 245–246

  17. D. Carbajal-Ida, C. Maury, E. Salas, R. Siret, E. Mehinagic, Eur. Food Res. Technol. 242, 117–126 (2016). https://doi.org/10.1007/s00217-015-2523-x

    Article  CAS  Google Scholar 

  18. H. Letaief, C. Maury, R. Symoneaux, R. Siret, J. Sci. Food Agric. 93, 2531–2540 (2013). https://doi.org/10.1002/jsfa.6071

    Article  CAS  PubMed  Google Scholar 

  19. C. Maury, E. Madieta, M. Le Moigne, E. Mehinagic, R. Siret, F. Jourjon, J. Texture Stud. 40(5), 511–535 (2009). https://doi.org/10.1111/j.1745-4603.2009.00195.x

    Article  Google Scholar 

  20. P.B. Pathare, U.L. Opara, F.A.-J. Al-Said, Food Bioprocess Technol. 6, 36–60 (2013). https://doi.org/10.1007/s11947-012-0867-9

    Article  CAS  Google Scholar 

  21. H.W. Xiao, C.L. Pang, L.H. Wang, J.W. Bai, W.X. Yang, Z.J. Gao, Biosyst. Eng. 105, 233–240 (2010). https://doi.org/10.1016/j.biosystemseng.2009.11.001

    Article  Google Scholar 

  22. Codex Alimentarius, Standard for Raisins, CXS 67-1981. Adopted in 1981, Amended in 2019. www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B67-1981%252FCXS_067e.pdf

  23. C. Bonazzi, E. Dumoulin, in Modern Drying Technology, vol. 3, ed. by E. Tsotsas, A.S. Mujumdar (Wiley, Hoboken, 2011), pp. 1–20. https://doi.org/10.1002/9783527631667

    Chapter  Google Scholar 

  24. A.L. Gabas, J. Telis-Romero, F.C. Menegalli, Dry. Technol. 17, 962–974 (1999). https://doi.org/10.1080/07373939908917584

    Article  Google Scholar 

  25. T.S. Workneh, A. Zinash, K. Woldetsadik, J. Food Sci. Technol. 51, 3114–3123 (2014). https://doi.org/10.1007/s13197-012-0835-4

    Article  CAS  PubMed  Google Scholar 

  26. Y. Soyer, N. Koca, F. Karadeniz, J. Food Compos. Anal. 16, 629–636 (2003). https://doi.org/10.1016/S0889-1575(03)00065-6

    Article  CAS  Google Scholar 

  27. J. Rösti, M. Schumann, M. Cleroux, F. Lorenzini, V. Zufferey, M. Rienth, Aust. J. Grape Wine Res. 24, 421–429 (2018). https://doi.org/10.1111/ajgw.12344

    Article  CAS  Google Scholar 

  28. F. Karadeniz, R.W. Durst, R.E. Wrolstad, J. Agric. Food Chem. 48, 5343–5350 (2000)

    Article  CAS  Google Scholar 

  29. E.C. López-Vidaña, I. Pilatowsky Figueroa, F.B. Cortés, B.A. Rojano, A. Navarro Ocaña, Int. J. Food Prop. 20, 294–305 (2017). https://doi.org/10.1080/10942912.2016.1155601

    Article  CAS  Google Scholar 

  30. S. Chamorro, A. Viveros, I. Alvarez, E. Vega, A. Brenes, Food Chem. 133, 308–314 (2012). https://doi.org/10.1016/j.foodchem.2012.01.031

    Article  CAS  PubMed  Google Scholar 

  31. M.P. Fabani, M.V. Baroni, L. Luna, M.S. Lingua, M.V. Monferran, H. Paños, A. Tapia, D.A. Wunderlin, G.E. Feresin, J. Food Compos. Anal. 58, 23–32 (2017). https://doi.org/10.1016/j.jfca.2017.01.006

    Article  CAS  Google Scholar 

  32. H.N.E. Kessy, Z. Hu, L. Zhao, M. Zhou, Molecules (2016). https://doi.org/10.3390/molecules21060729

    Article  PubMed  PubMed Central  Google Scholar 

  33. C.A. Rice-Evans, N.J. Miller, G. Paganga, Trends Plant Sci. 2, 152–159 (1997). https://doi.org/10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  34. F. Shahidi, Z. Tan, in Dried Fruits. ed. by C. Alasalvar, F. Shahidi (Blackwell Publishing Ltd., USA, 2013), pp. 372–392

    Chapter  Google Scholar 

  35. T. Ariga, M. Hamano, Agric. Biol. Chem. 54(10), 2499–2504 (1990). https://doi.org/10.1080/00021369.1990.10870369

    Article  CAS  Google Scholar 

  36. D.M. Barrett, J.C. Beaulieu, R. Shewfelt, Crit. Rev. Food Sci. Nutr. 50(5), 369–389 (2010). https://doi.org/10.1080/10408391003626322

    Article  PubMed  Google Scholar 

  37. R.P.F. Guiné, I.C. Almeida, A.C. Correia, F.J. Gonçalves, J. Food Meas. Charact. 9, 337–346 (2015). https://doi.org/10.1007/s11694-015-9241-8

    Article  Google Scholar 

  38. J.W. Bai, D.W. Sun, H.W. Xiao, A.S. Mujumdar, Z.-J. Gao, Innov. Food Sci. Emerg. Technol. 20, 230–237 (2013). https://doi.org/10.1016/j.ifset.2013.08.011

    Article  CAS  Google Scholar 

  39. A.C.P. Rybka, S.T. De Freitas, A.F. Netto, A.C.T. Biasoto, Comun. Sci. 6, 454–462 (2015)

    Article  Google Scholar 

  40. O. Angulo, M.W. Fidelibus, H. Heymann, J. Sci. Food Agric. 87, 865–870 (2007). https://doi.org/10.1002/jsfa.2790

    Article  CAS  Google Scholar 

  41. G. Bingol, J.S. Roberts, M.O. Balaban, Y.O. Devres, Dry. Technol. 30, 597–606 (2012). https://doi.org/10.1080/07373937.2011.654020

    Article  CAS  Google Scholar 

  42. S.U. Kadam, B.K. Tiwari, C.P. O’Donnell, Modif. Food Texture (2015). https://doi.org/10.1016/B978-1-78242-333-1.00006-1

    Article  Google Scholar 

  43. I.M. Javed, A.M. Waseem, A. Rawal, Y. Ibrar, J. Umer, MOJ Food Process. Technol. 7, 69–73 (2019). https://doi.org/10.15406/mojfpt.2019.07.00222

    Article  Google Scholar 

  44. P.G.J. Ganzevles, J.H.A. Kroeze, Chem. Senses 12, 563–576 (1987). https://doi.org/10.1093/chemse/12.4.563

    Article  CAS  Google Scholar 

  45. V. Sant’Anna, P.D. Gurak, L.D. Ferreira Marczak, I.C. Tessaro, Dye. Pigment. 98, 601–608 (2013). https://doi.org/10.1016/j.dyepig.2013.04.011

    Article  CAS  Google Scholar 

  46. K. Ali, F. Maltese, A.M. Fortes, M.S. Pais, Y.H. Choi, R. Verpoorte, Food Chem. 124, 1760–1769 (2011). https://doi.org/10.1016/j.foodchem.2010.08.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SENSOVEG platform for sensory analyses of raisins and Pr. Geoffrey Scollary for his advices and English language check.

Funding

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (University of Carthage) via a work-study Grant [2017-BALT-2838].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Maury.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Consent for publication

All authors agreed the publication of that article and all its content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiari, R., Le Meurlay, D., Patron, C. et al. Characterization of physico-chemical, textural, phytochemical and sensory proprieties of Italia raisins subjected to different drying conditions. Food Measure 15, 4635–4651 (2021). https://doi.org/10.1007/s11694-021-01018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01018-1

Keywords

Navigation