Skip to main content

Advertisement

Log in

Biochemical variability and functional properties of cowpea landraces grown in Hoggar: the Algerian arid region

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Cowpea is among the most grain legumes consumed in Algeria. The Algerian Saharan is a hostile environment characterized by high temperatures, scarcity of water and salinity of water and soil. In these regions, the farmers have for generations cultivated landraces cowpeas which are probably adapted to these particular environments and which may have particular nutritional and functional characteristics. These cowpeas deserve to be known and exploited in breeding and improvement programs. This study aims to determine the nutritional value and functional properties of Saharan cowpea through their chemical composition and the analysis of biochemical variability between accessions taking into consideration the environments of origin. Eighteen cowpea landraces were harvested in an arid region of southern Algeria (Hoggar, Tamanrasset). The seeds composition was evaluated by the determination of certain chemical characteristics such as moisture ash, crude protein, fat, total carbohydrates, and energy value. The antioxidant activity was also evaluated which includes total non-enzymatic antioxidant capacity (CANET) and lipid peroxidation, which were determined by conventional methods. The results showed variability among the accessions studied (p ≥ 0.05), and that all the landraces had high crude protein and total carbohydrates. The total non-enzymatic antioxidant capacity (CANET) recorded is low, as well as lipid peroxidation. The moisture content, ash content and fat content were also low in these saharan cowpea accessions. The Functional properties of the flour were also evaluated. The water absorption capacity (WAC) varies with an average of 1.17 g/gMS, the oil absorption capacity (OAC) with an average of 0.4 g/gMs, and the swelling index (SI) with an average of 2.63. The accessions NEA7 and NEA13 are the richest in protein and they have the highest nutritional value. We report here for the first time that cowpea seeds grown in the Hoggar region have high biochemical variability and highly acceptable functional characteristics; however, they could be a good source of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. P. Singh, Pratap A , in Biofortification of Food Crops, ed.By U. Singh , C. S. Praharaj , S. S. Singh, N. P. Singh ( Springer , New Delhi, 2016) , p.50

  2. B.Vanlauwe , M. Hungria, F. Kanampiu, K.E. Giller, (2019). https://doi.org/10.1016/j.agee.2019.106583

  3. M. B. Magrini, M. Anton, C. Cholez , G. Corre-Hellou, G. Duc, M.H. Jeuffroy M.H, J.M.Meynard, E.Pelzer, A.S.Voisin, S. Walrand. (2016). https://doi.org/10.1016/j.ecolecon.2016.03.024

  4. R. Paliwal, M. Abberton, B.Faloye, O. Olaniyi. (2020). https://doi.org/10.1016/j.pbi.2020.05.002

  5. B.B. Singh, O.L. Chambliss, A.B. Sharm, in Advances in cowpea research, ed.By B.B. Singh ,D.R.Mohanraj , E.Dashiellk, L.E.N. Jackai (IITA-JIRCA Ibadan, Nigeria, 1997), p. 49

  6. A. Ashogbon, E. Akintayo, Inter Food Rese. Journal. 20(6), 3093 (2013)

    Google Scholar 

  7. L. Ogunkanmi, O. Ogundipe, N.N.G.C. Fatokun, J. Food Agri. Environ. 6(3–4), 8 (2008)

    Google Scholar 

  8. E. Sebetha , A.Modi, L.Owoeye, (2015). https://doi.org/10.5539/jas.v7n1p224

  9. I. Stancheva, M.Geneva, M.Hristozkova; M.Sichanova, R. Donkova, G.Petkova, E. Djonova ( 2017) https://doi.org/10.1080/00103624.2017.1358740

  10. S.C. Achinewhu, G.N. Akah, (2003).https://doi.org/10.1023/B:QUAL.0000040364.74521.d8.

  11. F.C.D. Lopes, R.L.F. Gomes, F.R. Freire Filho, Sci. Agricola 60(2), 315 (2003)

    Article  Google Scholar 

  12. W.M. Sharawy, Z.EL-Fiky , Arab. J. Boitech 6, 67–68 (2003)

  13. C. Bennetau-Pelissero (2019). https://doi.org/10.1007/978-3-319-54528-8_3-1

  14. E. Lazaridi, G. Ntatsi, D. Savvas, P.J. Bebeli, (2017). https://doi.org/10.1007/s10722-016-0452-6

  15. M. Carvalho, T. Lino-Neto, E. Rosa, V. Carnide, J. Sci. Food Agric 97(13), 4273 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. M.P.Timko, B.Singh, in Genomics of tropical crop plants,ed.P.H Moor , R.Ming (Springer ,New York,2008), p. 227

  17. M. Carvalho, I. Castro, J. Moutinho-Pereira, C. Correia, M. Egea-Cortines, M. Matos, E. Rosa, V. Carnide, T. LIno-Neto (2019). https://doi.org/10.1016/j.jplph.2019.153001

    Article  Google Scholar 

  18. K.A.Taiwo. (1998) https://doi.org/10.1016/S0166-4972 (98)00015–7

  19. S.K. Diallo, D. Soro, K. Koné, N. Assidjo, K. Yao, D. Gnakri, Intern. J. Innovation. Sci. Rese. 18(2), 4342015 (2015)

    Google Scholar 

  20. H. Karimi-Maleh, F. Karimi, Y. Orooji, G.Mansouri , A. Razmjou, A.Aygun, F. Sen(2020), Scienti Reports, 10(11699 ),2020

  21. M. Harbi Çalımlı ,Ö.Demirbaş, A. Aygün, M. Hakkı Alma, M. Salih Nas, A. Khan, A. M. Asiri, F. Şen (2019) https://doi.org/10.1007/s12668-019-00633-z.(2019)

  22. Ö. Demirbaş, M. Harbi Çalımlı , B. Demirkan. M. Hakkı Alma, M. Salih Nas, A. Khan, Abdullah M. Asiri, F. Şen (2019) https://doi.org/10.1007/s12668-019-00628-w

  23. Ö. Demirbaş, M. Harbi Çalımlı , B. Demirkan. M. Hakkı Alma, M. Salih Nas, A. Khan, Abdullah M. Asiri, F. Şen (2019) https://doi.org/10.1007/s12668-019-00635-x.

  24. C.A. Koko, M. Diomande, B.K. Kouame, E.S.S. Yapo, J.N.D. Kouassi, Intern. J. Innova. Appli. Stud 17(2), 496 (2016)

    CAS  Google Scholar 

  25. A.Olusola, J. Chukwu (2020) https://doi.org/10.33945/SAMI/AJCA.2020.1.2

  26. W. Prinyawiwatkul, K.H. Mcwatters, L.R. Beuchat, R.D. Phillips, M.A. Uebersak, Critic. Revie. Food Sci. Nutri 36(5), 413–436 (1996)

    Article  CAS  Google Scholar 

  27. T.Haque, M.Tabassum, M. Jamilur Rahman, M.Siddique, M. Mostafa, M.Abdul Khalaque, Z.Abedine, H. Hamidi (2020). https://doi.org/10.33945/SAMI/AJCA.2020.2.7

  28. N.Echikh, Organisation du pool génique de formes sauvages et cultivées d'une légumineuses alimentaire Vigna unguiculata (L) Walp. PhD Thesis, Faculté Universitaire des sciences Agronomiques de Gembloux: Belgium, (2000)

  29. N.Gahlmi, PhD Thesis, Etude de la diversité génétique de quelques écotypes locaux de vigna unguiculata (L.) Walp. cultivés en Algérie .École Nationale Supérieure Agronomique : Alger, ( 2011)

  30. N.Ghalmi , M. Malice, J.M. Jacquemin,S.M. Ounane, L.Mekliche, J.P. Baudoin. (2010). https://doi.org/10.1007/s10722-009-9476-5.

  31. AOAC. Official method of analysis .Association of Official Analytical Chemist, 5th, Arlington, USA (2005).

  32. FAO. Food energy , methods of analysis and conversion factors, Food and Agriculture Organization of the United Nations, Rome.(2003).

  33. W. Maclean, J. Harnly, J.Chen, S. Chevassus-Agnes, G. Gilani, G. Livesey, P. Food and agriculture organization of the united nations technical workshop report. 77, 8 (2003)

  34. P. Rieto, M. Pineda, M. Aguilar, Analy. Biochem 269(2), 337 (1999)

    Article  Google Scholar 

  35. I. Cakmak, W. J. Horst. (1991). https://doi.org/10.1016/j.jplph.2019.153001

  36. J. Abu, K. Muller, K. GyebiDuodu, A. Minnar. (2005). https://doi.org/10.1016/j.foodchem.2004.09.010

  37. C.M.F. Mbofung, Y.N. Njintang, K.W. Waldron. (2002). https://doi.org/10.1016/S0260-8774(01)00196-0

  38. E.N. Herken, I. Senol, M.D. Öner, N. Bilgicil, S. Güzel. (2007). https://doi.org/10.1016/j.jfoodeng.2005.10.005

  39. R.A. Ghavidel, J. Prakash. (2000). https://doi.org/10.1016/j.lwt.2006.08.002

  40. F. Appiah, J. Asibuo, P. Kumah, African J. Food Sci 5(2), 100 (2011)

    CAS  Google Scholar 

  41. A. Yusuf, H. Ayedun, L. Sanni, Food Chem. 111(2), 277 (2008). https://doi.org/10.1016/j.foodchem.2007.12.014

    Article  CAS  PubMed  Google Scholar 

  42. M. Boateng, J. Addo, H. Okyere, J. Berchie, A. Tetteh, Afr J. Food Sci Technol. 4(4), 64 (2013)

    Google Scholar 

  43. A. Mazahib, M. Nuha, I. Salawa, E. Babiker, Inter Food Rese. J. 20(3), 1165 (2013)

    CAS  Google Scholar 

  44. D.P. Kachare, J.K. Chavan, S.S. Kadam, Plant Foods. Human Nutri. 38(2), 155 (1988)

    Article  CAS  Google Scholar 

  45. O. Boukar, F. Massawe, S. Muranaka, F. Jorge, B. Maziya-Dixon, B. Singh, C. Fatokun, Christian Plant Genetic Res. 4(9), 515–522 (2011)

    Article  Google Scholar 

  46. T.S. Naiker, A. Gerrano, J. Mellem. (2019). https://doi.org/10.1007/s13197-019-03649-1

    Article  Google Scholar 

  47. A. Balla, M. Baragé, Tropicultura 24(1), 39 (2006)

    Google Scholar 

  48. D.K. Séraphin, K.K. Youssouf, S. Doudjo, A.N.B. Emmanuel, Y.K. Benjamin, G. Dago, Europ. Scient. J. ESJ. 11(27), 288 (2015)

    Google Scholar 

  49. K.N.D. Jacob, K. Ayolié, A.C. Koko, M.A.S. Boyé, S.J. Gogbeu, T.D. Charlotte, T. Scholars J. Agricul. Veterin. Sci 3(4), 292 (2016)

    Article  Google Scholar 

  50. S. Rahali-osmane, K. Boulahia, R. Djebbar, O. Abrous-Belbachir, Analele Univers. Oradea. Fascicu. Biolog. 1, 7 (2020)

    Google Scholar 

  51. P. Siddhuraju, K. Becker, Food Chem. 1(101), 10–19 (2007)

    Article  Google Scholar 

  52. M.V. Avanza, M.G. Chaves, B.A. Acevedo, M.C. Añón. (2012). https://doi.org/10.1016/j.lwt.2012.04.015

  53. I.O. Akinyele, A.O. Onigbinde, M.A. Hussain, A. Omololu, 51(6), 1483-1485 (1969)

  54. A. IqbaL, A.I. Khalil, N. Ateeq, M.S. Khan, Food Chem. 97(2), 331 (2006)

    Article  CAS  Google Scholar 

  55. M. Rivas-Vega, E. Goytortúa-Bores, J. Ezquerra-Brauer, M. Salazar-García, L. Cruz-Suárez, H. Nolasco, R. Civera-Cerecedo. (2006). https://doi.org/10.1016/j.foodchem.2005.03.021

  56. J. Amarteifio, O. Tibe, R. Njogu, The mineral composition of Bambara groundnut (Vigna subterranea (L) Verdc) grown in Southern Africa. Afric. J. Biotechnol. 5(23), 2408 (2006)

    CAS  Google Scholar 

  57. S. Okonkwo, M. Opara, J. Rese, Appli. Sci 5(6), 394 (2010)

    CAS  Google Scholar 

  58. B. Anhwange, G. Atoo, J. Pure, ApplI. Sci. 2(1), 11 (2015)

    Google Scholar 

  59. M.S. Alidu, I.K. Asante, H.K. Mensah. (2020). https://doi.org/10.1016/j.heliyon.2020.e03406

  60. J.O. Anyango, H.L. De Kock, J.R.N. Taylor. (2011). https://doi.org/10.1016/j.lwt.2011.07.010

  61. M. Aremu, O. Olaofe, E. Akintayo, Bull. Pure Appli. Sci. 24(1–2), 2005 (2005)

    Google Scholar 

  62. M. Aremu, O. Olaofe, E. Akintayo, J. Appli Sci. 6(9), 1900 (2006)

    Article  CAS  Google Scholar 

  63. R. Hoover, F. Sosulski, Canadian J. Physiol. Pharmaco. 69(1), 79 (1991)

    Article  CAS  Google Scholar 

  64. Z. Ofuya, V. Akhidue, J. Applied Sc Environ. Managem. 9(3), 99 (2005)

    Google Scholar 

  65. D. Del Rio, A.J. Stewart, N.A. Pellegrini. (2005). https://doi.org/10.1016/j.numecd.2005.05.003

  66. E.A. Bacelar, D.L. Santos, J.M. Moutinho-pereira, B.C. Gonçalves, H.F. Ferreira, C.M. Correia. (2006). https://doi.org/10.1016/j.plantsci.2005.10.014

  67. N.A. Anjum, P. Sharma, S.S. Gill, M. Hasanuzzaman, E.A. Khan, K. Kachhap, A.A. Mohamed, P. Thangavel, G.D. Devi, P. Vasudhevan, Environ sci. pollu. Resear. 23(19), 19002 (2016)

    Article  CAS  Google Scholar 

  68. O. Akinjayeju, K.T. Bisiriyu, Int. J. Food Sci. Technol 39(4), 355 (2004)

    Article  CAS  Google Scholar 

  69. O.C. Adebooye, V. Singh, Innova. (2008). https://doi.org/10.1016/j.ifset.2007.06.003

    Article  Google Scholar 

  70. C. Hutton, A.M. Campbell, J.P. Cherry. Am. Chem. Soc. ACS. 177 (1981)

  71. M.S. Butt, B. Rizwana, Pakist J. Nutrit 9(4), 373 (2010)

    Article  CAS  Google Scholar 

  72. R.M. Sandhya, K. Bhattacharya, J. Textu Stud. 20(2), 127 (1989)

    Article  Google Scholar 

  73. K. Adebowale, O. Lawal, Food Rese. Internat. 37(4), 355 (2004)

    Article  CAS  Google Scholar 

  74. P.O. Aremo, O. Olaofe, J. Food Technol 5(2), 109 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge their funding agency in the public: The Directorate-General (La DGRSDT) for their financial support that they gave us during the whole realization period of this research. Also, our acknowledgments are to the members of the research group 02 of the laboratory of Integrated Improvement of Vegetable Productions ( AIPV-CP2711100) (El Harrach, Algiers), to Division of Agriculture and Biotechnology, National Research Center for Biotechnology (CRBT, Constantine, Algeria) and to Laboratory of Genetic, Biochemistry and Plant Biotechnology of University des Frères Mentouri Constantine 01, Department of Applied Biology, Faculty of Life Sciences (Constantine, Algeria) for providing us the technical assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basseddik Aida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida, B., Sihem, T., Ines, B. et al. Biochemical variability and functional properties of cowpea landraces grown in Hoggar: the Algerian arid region. Food Measure 15, 3509–3522 (2021). https://doi.org/10.1007/s11694-021-00919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00919-5

Keyword

Navigation