Skip to main content

Advertisement

Log in

Multigrain bread: dough rheology, quality characteristics, in vitro antioxidant and antidiabetic properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

There is an increasing emphasis on the consumption of whole grain products, moreover, unconventional and underutilized grains such as Amaranth and Acha are reported to have tremendous health benefits, and their incorporation into whole wheat flour could significantly modify the functionality of flour or its product(s). In this study, bread, an important dietary staple food; was produced from blends of whole-grain wheat, amaranth and acha flours, combined in different ratios (70:30:0, 70:0:30, 70:20:10, 70:10:20 and 70:15:15 represented by MM1, MM2, MM3, MM4 and MM5 respectively). Rheology and pasting properties of the flour blends, quality attributes, antioxidant properties, α-amylase and α-glucosidase inhibition, as well the glycaemic indices (GI) of the multigrain breads were evaluated using standard methods. Whole wheat flour supplementation with amaranth flour and/or acha flour, modified the rheology and pasting properties of composite flours, increased the ash, fibre and protein contents of bread while reducing the carbohydrate content. Multigrain breads also exhibited significant hydroxyl (OH) radical scavenging ability, Fe2+ chelation and inhibit of Fe2+- induced lipid peroxidation. Bread with greater amaranth flour substitution (MM1B and MM4B) have higher α-amylase (IC50 = 1.90, 1.41 mg/mL) and α-glucosidase (IC50 = 0.83, 1.39 mg/mL) inhibitory abilities, while multigrain breads generally possessed low GI (42–51) value whereas, white flour bread (control) had intermediate GI (65). The synergistic properties contributed by the grains may have conferred on the bread its potential as a dietary product for better health maintenance, thus, multigrain bread is of greater dietary and health importance than white bread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P. Kumar, R.K. Yadava, B. Gollen, S. Kumar, R.K. Verma, S. Yadav, Nutritional contents and medicinal properties of wheat: a review. Life Sci. Med. Res. 22, 1–10 (2011)

    Google Scholar 

  2. Y. Xiao, L. Huang, Y. Chen, S. Zhang, X. Rui, M. Dong, Comparative study of the effects of fermented and non-fermented chickpea flour addition on quality and antioxidant properties of wheat bread. CYTA J. Food 14, 621 (2016)

    CAS  Google Scholar 

  3. B.S. Ahmad, T. Talou, E. Straumite, M. Sabovics, Z. Kruma, Z. Saad, A. Hijazi, O. Merah, Protein bread fortification with cumin and caraway seeds and by-product flour. Foods (2018). https://doi.org/10.3390/foods7030028

    Article  Google Scholar 

  4. N. Okarter, R.H. Liu, Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 50, 193 (2010)

    CAS  PubMed  Google Scholar 

  5. W. Bae, B. Lee, G.G. Hou, S. Lee, Physicochemical characterization of whole-grain wheat flour in a frozen dough system for bake off technology. J. Cereal Sci. 60, 520 (2014)

    CAS  Google Scholar 

  6. S.G. Mlakar, M. Bavec, M. Turinek, F. Bavec, Rheological properties of dough made from grain amaranth-cereal composite flours based on wheat and spelt. Czech J. Food Sci. 5, 309 (2009)

    Google Scholar 

  7. H. Malik, G.A. Nayik, B.N. Dar, Optimisation of process for development of nutritionally enriched multigrain bread. J. Food Process Technol. (2015). https://doi.org/10.4172/2157-7110.1000544

    Article  Google Scholar 

  8. S.A. El-Sohaimy, M.G. Shehata, T. Mehany, M.A. Zeitoun, Nutritional, physicochemical, and sensorial evaluation of flat bread supplemented with quinoa flour. Int. J. Food Sci. (2019). https://doi.org/10.1155/2019/4686727

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Gunenc, H. Tavakoli, K. Seetharaman, P.M. Mayer, D. Fairbanks, F. Hosseinian, Stability and antioxidant activity of alkyresorcinols in breads enriched with hard and soft wheat brans. Food Res. Int. 51, 571 (2013)

    CAS  Google Scholar 

  10. V. Uygur, M. Şen, The effect of phosphorus application on nutrient uptake and translocation in wheat cultivars. Int. J. Agric. For. Life Sci. 2, 171 (2018)

    Google Scholar 

  11. A.G. Oktem, Effects of different zinc levels on grain yield and some phenological characteristics of red lentil (Lens culinaris Medic.) under arid conditions. Turk J. Agric. For. 43, 360 (2019)

    CAS  Google Scholar 

  12. F. Ali, F. Abbas, Allelopathic potential of sorghum water extract and it’s mulching on Echinochloa colona (L.) link in maize. Pak. J. Bot 52, 537 (2020)

    Google Scholar 

  13. M. Soriano-García, I.S. Aguirre-Díaz, Nutritional functional value and therapeutic utilization of amaranth. In: Intech Open, Nutritional Value of Amaranth (2019) https://doi.org/10.5772/intechopen.86897

  14. E. Vélez-Jiménez, K. Tenbergen, P. Santiago, M.A. Cardador-Martínez, Functional attributes of amaranth Austin. J. Nutr. Food Sci. 2, 1 (2014)

    Google Scholar 

  15. S.H. Lee, H.A. Jouihan, R.C. Cooksey, D. Jones, H.J. Kim, D.R. Winge, D.A. McClain, Manganese supplementation protects against diet–induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 154, 1029 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O. Chukwu, A.J. Abdul-Kadir, Proximate chemical composition of acha (Digitaria exilis and Digitaria iburua) grains. J. Food Technol. 6, 214 (2008)

    CAS  Google Scholar 

  17. I.A. Jideani, V.A. Jideani, Developments on the cereal grains of Digitaria exilis (acha) and Digitaria iburua (iburu). J. Food Sci. Technol. 48, 251 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. AACC, American Association of Cereal Chemists, Approved Methods of Analysis, 11th edn. (Cereal & Grains Association, St. Paul, 2000)

    Google Scholar 

  19. W.H. Li, X.L. Xiao, W.H. Zhang, J.M. Zheng, Q. Luo, S.H. Ouyang, G.Q. Zhang, Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Res. Int. 58, 7 (2014)

    CAS  Google Scholar 

  20. AACCI. American Association of Cereal Chemists International. AACC method 10-09.01. Basic straight dough bread-baking method-long fermentation. Approved Methods of Analysis, 11th edn. (St. Paul, MN, USA, 2000)

  21. L. Alvarez-Jubete, M. Auty, E.K. Arendt, E. Gallagher, Baking properties and microstructure of pseudocereal fours in gluten-free bread formulations. Eur. Food Res. Technol. 230, 437 (2010)

    CAS  Google Scholar 

  22. AOAC, Official Methods of Analysis, 19th edn. (Association of Official Analytical Chemists International, Rockville, 2012)

    Google Scholar 

  23. A.L. Merill, B.K. Watt. Energy Value of Foods: Basis and Derivation. (Agriculture handbook 74, Wahington, DC US Department of Agriculture, Agricultural Research Service, 1973)

  24. F. Yamaguchi, T. Ariga, Y. Yoshimura, K. Nakazaw, Antioxidative and antiglycation activity of garcinol from Garcinia indica fruit rind. J. Agric. Food Chem. 48, 180 (2000)

    CAS  PubMed  Google Scholar 

  25. B. Halliwell, J.M.C. Gutteridge, Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347 (1981)

    CAS  PubMed  Google Scholar 

  26. H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reactions. Anal. Biochem. 95, 351 (1979)

    CAS  PubMed  Google Scholar 

  27. T. Hoshino, T.Y. Sasaki, T. Watanabe, T. Nagasawa, T. Yamane, Purification andsome characteristics of extracellular lipase from Fusarium oxysporum f. sp. Lini. Biosci. Biotechnol. Biochem. 56, 660 (1992)

    CAS  PubMed  Google Scholar 

  28. V. Worthington, Alpha amylase. In: Worthington Enzyme Manual. (Worthington Biochemical corporation, New Jersey, 1993) pp. 36–41

  29. Y.I. Kwon, E. Apostolidis, Y.C. Kim, K. Shetty, Health benefits of traditional corn, beans and pumpkin: In vitro studies for hyperglycemia and hypertension management. J Med Food. 10, 266 (2007)

    CAS  PubMed  Google Scholar 

  30. T.M. Wolever, D.J. Jenkins, A.L. Jenkins, R.G. Josse, The glycemic index: methodology and clinical implications. Am. J. Clin. Nutr. 54, 846 (1991)

    CAS  PubMed  Google Scholar 

  31. J. Rothkaehl. Determination of the rheological properties of dough from domestic wheat flour (in Polish). ZPZiP IBPRS. Warszawa (2004)

  32. L.P. Des-Marchais, M. Foisy, S. Mercier, S. Villeneuve, M. Mondor, Bread-making potential of pea protein isolate produced by a novel ultrafiltration/diafiltration process. Procedia Food Sci. 1, 1425 (2011)

    CAS  Google Scholar 

  33. P.R. Venskutonis, P. Kraujalis, Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 12, 381–412 (2013)

    CAS  PubMed  Google Scholar 

  34. M. Lacko-Bartosova, J. Korczyk-Szabo, Technological properties of spelt-amaranth composite flours. Res. J. Agric. Sci. 44, 90 (2012)

    Google Scholar 

  35. C.G. Awuchi, V.S. Igwe, C.K. Echeta, The functional properties of foods and flours. Int. J. Adv. Acad. Res. 5, 139 (2019)

    Google Scholar 

  36. T. Naseem, M.S. Bhatti, A. Ahmed, N. Khalid, Suitability of some Pakistani wheat varieties for pizza baking. J. Agric. Res. 49, 369 (2011)

    Google Scholar 

  37. G. Mekonnen, M. Woldesenbet, T. Teshale, T. Biru, Amaranthus caudatus production and nutrition contents for food security and healthy living in Menit shasha, Menit goldya and Maji districts of bench Maji zone, south western Ethiopia. Nutr. Food Sci. (2018). https://doi.org/10.19080/NFSIJ.2018.07.555712

    Article  Google Scholar 

  38. L.A. Stone, K. Lorenz, The starch of Amaranthus: physiochemical properties and functional characteristics. Starch 36, 232 (1984)

    CAS  Google Scholar 

  39. A. Chauhan, D.C. Saxena, S. Singh, Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food Agric. (2016). https://doi.org/10.1080/23311932.2015.1125773

    Article  Google Scholar 

  40. P.M. Sanz-Penella, M. Wronkowska, M. Soral-Smietana, M. Haros, Effect of whole amaranth flour on bread properties and nutritive value. LWT- Food Sci. Technol. 50, 679 (2013)

    CAS  Google Scholar 

  41. S.O. Serna-Saldivar, Dry milling operations In: Cereal Grains: Properties, Processing, and Nutritional Attributes (Taylor and Francis, Boca Raton, 2010) pp. 177–222

  42. L. Hřivna, V. Zigmundová, I. Burešová, R. Maco, T. Vyhnánek, V. Trojan, Rheological properties of dough and baking quality of products using coloured wheat. Plant Soil Environ. 64, 203 (2018)

    Google Scholar 

  43. R.H. Glew, E.P. Laabes, J.M. Presley, J. Schulze, R. Andrews, Y.-C. Wang, Y.-C. Chang, L.-T. Chuang, Fatty acid, amino acid, mineral and antioxidant contents of Acha (Digitaria exilis) grown on the Jos Plateau, Nigeria. Int. J. Nutr. Metabol. 5, 1 (2013)

    CAS  Google Scholar 

  44. M. Kabirullah, A. Rukonuddin, S.A. Khan, H. Mosharef, R.A.K. Mojibur, M.I.K. Azizul et al., Analysis of nutrients of Bangladeshi processed foods. Part I-Different types of biscuits. Bangladesh J. Sci. Ind. Res. 30, 121 (1995)

    Google Scholar 

  45. R. Kumar, S.S. Chandra, Studies on proximate analysis of biscuits using multigrain flours during ambient condition. Int. J. Food Sci. Nutr. 1, 39 (2016)

    Google Scholar 

  46. J.A. Ayo, E. Okoye, Nutrient composition and functional properties of fonio (Digitaria exilis) and amaranth (Amaranthus cruentus) flour blends. Asian Food Sci. J. 16, 53 (2020)

    Google Scholar 

  47. R. Bressani, The proteins of grain amaranth. Food Rev. Int. 5, 13 (1989)

    Google Scholar 

  48. M.W. Mburu, N.K. Gikonyo, G.M. Kenji, A.M. Mwasaru, Nutritional and functional properties of a complementary food based on Kenyan amaranth grain (Amaranthus cruentus). Afr. J. Food. Agric. Nutr. Dev. 12, 5959 (2012)

    CAS  Google Scholar 

  49. G.G. Heshe, G.D. Haki, A.Z. Woldegiorgis, H.F. Gemede, Effect of conventional milling on the nutritional value and antioxidant capacity of wheat types common in Ethiopia and a recovery attempt with bran supplementation in bread. Food Sci. Nutr. (2017). https://doi.org/10.1002/fsn3.460

    Article  Google Scholar 

  50. C.A. Echendu, I.C. Obizoba, J.U. Anyika, P.C. Ojimelukwe, Changes in chemical composition of treated and untreated hungry rice “acha” (Digitaria exilis). Pakistan J. Nutr. 8, 1779 (2009)

    CAS  Google Scholar 

  51. A. Vollmannová, E. Margitanová, T. Tóth, M. Timoracká, D. Urminská, T. Bojňanská, I. Čičová, Cultivar influence on total polyphenol and rutin contents and total antioxidant capacity in buckwheat, amaranth, and quinoa seeds. Czech J. Food Sci. 31, 589 (2013)

    Google Scholar 

  52. L. Levákova, M. Lacko-Bartošová, Phenolic acids and antioxidant activity of wheat species: a review. Agriculture 63, 92 (2017)

    Google Scholar 

  53. M. Vaher, K. Matso, T. Levandi, K. Helmja, M. Kaljurand, Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2, 762 (2010)

    Google Scholar 

  54. C.M. Liyana-Pathirana, F. Shahidi, Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 44, 1151 (2007)

    Google Scholar 

  55. U. Jan, A. Gani, M. Ahmad, U. Shah, W.N. Baba, F.A. Masoodi, S. Maqsood, A. Gani, I.A. Wani, S.M. Wani, Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties. J. Food Sci. Technol. 52, 6334 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. D. Dziki, R. Różyło, U. Gawlik-Dziki, M. Świeca, Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 40, 48 (2014)

    CAS  Google Scholar 

  57. M. Srinivasan, A.R. Sudheer, V.P. Menon, Ferulic acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40, 92 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. M. Barros, L.F. Fleuri, G.A. Macedo, Seed lipases: sources, applications and properties—a review. Braz. J. Chem. Eng. 27, 15 (2010)

    CAS  Google Scholar 

  59. B. Belderok, H. Mesdag, D.A. Donner, Bread-Making Quality of Wheat (Springer, New York, 2000)

    Google Scholar 

  60. S.D. Sakhare, A.A. Inamdar, K.V. Kumar, U. Dharmaraj, Evaluation of roller milling potential of amaranth grains. J. Cereal Sci. 73, 55 (2017)

    Google Scholar 

  61. D.W. Irving, I.A. Jideani, Microstructure and composition of Digitaria exilis Stapf (acha): a potential crop. Cereal Chem. 73, 224 (1997)

    Google Scholar 

  62. M. Marrelli, G. Statti, F. Conforti, A review of biologically active natural products from Mediterranean wild edible plants: benefits in the treatment of obesity and its related disorders. Molecules (2020). https://doi.org/10.3390/molecules25030649

    Article  PubMed  PubMed Central  Google Scholar 

  63. H.A.H. El-Aal, Lipid peroxidation end-products as a key of oxidative stress: effect of antioxidant on their production and transfer of free radicals, in Lipid Peroxidation, ed. by A. Catala (Intech Open, 2012). https://doi.org/10.5772/45944

  64. H.A. Al-Shwyeh, Date palm (Phoenix dactylifera L.) fruit as potential antioxidant and antimicrobial agents. J. Pharm. Bioallied Sci. 11, 1 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. A.O. Ademiluyi, G. Oboh, Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol. 65, 305 (2013)

    CAS  PubMed  Google Scholar 

  66. L.S. Augustin, C.W. Kendall, D.J. Jenkins, W.C. Willet, A. Astrup, A.W. Barclay, I. Björck, J.C. Brand-Miller et al., Glycemic index, glycemic load and glycemic response: an International scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 5, 795 (2015)

    Google Scholar 

  67. A. Ziaee, A. Afaghi, M. Sarreshtehdari, Effect of low glycemic load diet on glycated hemoglobin (HbA1c) in poorly-controlled diabetes patients. Global J. Health Sci. 4, 211 (2012)

    Google Scholar 

  68. G. Askari, M. Heidari-Beni, M.B. Broujeni, A. Ebneshahidi, M. Amini, R. Ghisvana, B. Iraj, Effect of whole wheat bread and white bread consumption on pre-diabetes patients. Pakistan J. Med. Sci. 29, 275 (2013)

    Google Scholar 

  69. A.I. Olagunju, Influence of whole wheat flour substitution and sugar replacement with natural sweetener on nutritional composition and glycaemic properties of multigrain bread. Prev. Nutr. Food Sci. 24, 456 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. The University of Sydney. Glycemic Index Database. (2012) http://www.glycemicindex.com. Accessed Feb 2012)

  71. A. Taye, E. Engidawork, K. Urga, An in vitro estimation of glycemic index of white bread and improvement of the dietary fiber. Adv. Food Technol. Nutr. Sci. 2, 83 (2016)

    CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aderonke I. Olagunju.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

The animal study was carried out in accordance with guidelines for animal subjects approved by the Ethics Committee of School of Agriculture and Agricultural Technology, Federal University of Technology, Akure, Ondo State, Nigeria (approval number FUTA/SAAT/2019/013).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olagunju, A.I., Oluwajuyitan, T.D. & Oyeleye, S.I. Multigrain bread: dough rheology, quality characteristics, in vitro antioxidant and antidiabetic properties. Food Measure 15, 1851–1864 (2021). https://doi.org/10.1007/s11694-020-00670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00670-3

Keywords

Navigation