Skip to main content
Log in

Effect of active edible coating on quality properties of green-raisin and ranking the samples using fuzzy approach

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study investigated the effect of monoglycerol-stearate and carnauba wax (0.5% w/v) containing Shirazi thyme essential oil (TEO: 150 ppm) on the physical (moisture content, water activity, firmness and color), microbial (total counts, yeast and mold) and sensory properties of raisin during 12 weeks storage at room-temperature. Sensory quality of samples was investigated by the fuzzy-ranking method. The results show that there was a significant difference in moisture content and water activity between uncoated and coated samples (p < 0.05). A negative and powerful correlation (R = − 0.927) was found between moisture content and firmness based on Pearson's correlation coefficient. The lipid-based coating, especially without TEO, show better textural quality (p < 0.05). The ΔE value of non-coated samples was significantly higher than lipid-based coated samples without TEO (p < 0.05). Thymol (42.13%), carvacrol (14.88%) and p-cymene (11.31%) are the major constituents of TEO. At the end of storage, the lowest total counts and yeasts and molds was recorded for samples coated with TEO (2.3 and 1.6 Log CFU/g). The results of the fuzzy ranking showed none of the sensory attributes were considered the “unimportant” by the panelist. The taste and texture were the most important sensory properties, while color was the weakest. The results of fuzzy ranking introduced the carnauba wax coating without TEO as the best treatment. Overall, lipid-based coatings effectively can be used as ecofriendly and economic edible coating to improve quality and the shelf-life of raisins. However, the use of essential oils that are more harmonious with raisins can be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO, Table and Dried Grapes (Food and Agriculture Organization of the United Nations (FAO), Rome, 2016), pp. 1–14

    Google Scholar 

  2. G. Adiletta, P. Russo, W. Senadeera, M. Di Matteo, J. Food Eng. 172, 9 (2016)

    CAS  Google Scholar 

  3. M. Hosseini-Farahi, Agric. Commun. 3(1), 30–36 (2015)

    Google Scholar 

  4. N. Bernaert, B. Van Droogenbroeck, E. Van Pamel, H. De Ruyck, Trends Food Sci. Technol. 84, 22–24 (2019)

    CAS  Google Scholar 

  5. J. Moses, T. Norton, K. Alagusundaram, B. Tiwari, Food Eng. Rev. 6(3), 43–45 (2014)

    Google Scholar 

  6. X.L. Zhang, C.S. Zhong, A.S. Mujumdar, X.H. Yang, L.Z. Deng, J. Wang, H.W. Xiao, J. Food Eng. 241, 51 (2019)

    CAS  Google Scholar 

  7. R. Ghasemzadeh, A. Karbassi, H.B. Ghoddousi, World Appl. Sci. J. 3(1), 82–87 (2008)

    Google Scholar 

  8. G. AlAskari, A. Kahouadji, K. Khedid, R. Charof, Z. Mennane, Middle East J. Sci. Res. 11, 1 (2012)

    Google Scholar 

  9. E.A. Baldwin, Handbook of Food Preservation, 2nd edn. (CRC Press, Florida, 2007), pp. 478–508

    Google Scholar 

  10. S. Khoshnoudi-Nia, N. Sedaghat, J. Food Process. Preserv. 43(10), e14121 (2019)

    CAS  Google Scholar 

  11. M. Vargas, F. Debeaufort, G. Blond, M. Capelle, A. Voilley, Crit. Rev. Food Sci. Nutr. 48(6), 496–511 (2008)

    CAS  PubMed  Google Scholar 

  12. M.E. Embuscado, K.C. Huber, Edible Films and Coatings for Food Applications, vol. 9 (Springer, New York, 2009), pp. 169–208

    Google Scholar 

  13. A.R.M. Fritz, J. de Matos Fonseca, T.C. Trevisol, C. Fagundes, G.A. Valenciain Polymers for Agri-Food Applications, ed. by T.G. Gutiérrez (Springer, Cham, 2019), p. 433–463

  14. G.F. Mehyar, K. Al-Ismail, J.H. Han, G.W. Chee, Food Sci. 77(2), E52–E59 (2012)

    CAS  Google Scholar 

  15. H. Chen, Z. Sun, H. Yang, Sci. Hortic. 244, 157–164 (2019)

    CAS  Google Scholar 

  16. M.A. Haq, M.J. Alam, A. Hasnain, LWT-Food Sci. Technol. 50(1), 306–311 (2013)

    Google Scholar 

  17. J. Jankar, V. Pawar, A. Sharma, J. Pharmacol. Phytochem. 8(3), 774–777 (2019)

    Google Scholar 

  18. V. Morillon, F. Debeaufort, G. Blond, M. Capelle, A. Voilley, Crit. Rev. Food Sci. Nutr. 42(1), 67–89 (2002)

    CAS  PubMed  Google Scholar 

  19. K. Barman, R. Asrey, R. Pal, Sci. Hortic. 130(4), 795–800 (2011)

    CAS  Google Scholar 

  20. J.Y. Lee, H.J. Park, C.Y. Lee, W.Y. Choi, LWT-Food Sci. Technol. 36(3), 323–329 (2003)

    CAS  Google Scholar 

  21. A.N. Olaimat, M.A. Al-Holy, M. Abu Ghoush, A.A. Al-Nabulsi, T.M. Osaili, R.A. Holley, J. Food Process. Preserv. 43(5), e13925 (2019)

    Google Scholar 

  22. S. Burt, Int. J. Food Microbiol. 94(3), 223–253 (2004)

    CAS  PubMed  Google Scholar 

  23. M.R. Fazeli, G. Amin, M.M.A. Attari, H. Ashtiani, H. Jamalifar, N. Samadi, Food Control 18(6), 646–649 (2007)

    Google Scholar 

  24. M.S. Shakeri, Int. J. Food Sci. Technol. 46(3), 549–554 (2011)

    CAS  Google Scholar 

  25. P.S. Chavan, S.G. Tupe, Food Control 46, 115–120 (2014)

    CAS  Google Scholar 

  26. K. Youdim, S. Deans, H. Finlayson, J. Essent. Oil Res. 14(3), 210–215 (2002)

    CAS  Google Scholar 

  27. B. Imelouane, H. Amhamdi, J.P. Wathelet, M. Ankit, K. Khedid, A. El Bachiri, Int. J. Agric. Biol. 11(2), 205–208 (2009)

    CAS  Google Scholar 

  28. S.C. Purcell, P. Pande, Y. Lin, E.J. Rivera, L.U. Paw, L.M. Smallwood, G.A. Kerstiens, L.B. Armstrong, M.T. Robak, A.M. Baranger, J. Chem. Educ. 93(8), 1422–1427 (2016)

    CAS  Google Scholar 

  29. M. Bouzon, K. Govindan, C.M.T. Rodriguez, L.M. Campos, Resour. Conserv. Recycl. 108, 182–197 (2016)

    Google Scholar 

  30. Z. Tahsiri, M. Niakousari, S. Khoshnoudi-Nia, S.M.H. Hosseini, Food sci. Nutr. 5(3), 739–749 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. R. Sasikumar, K. Vivek, S. Deka, Int. Food Res. J. 26(4), 1229–1236 (2019)

    CAS  Google Scholar 

  32. M. Martinez-Velazquez, G.A. Castillo-Herrera, R. Rosario-Cruz, J.M. Flores-Fernandez, J. Lopez-Ramirez, R. Hernandez-Gutierrez, E. del Carmen Lugo-Cervantes, Parasitol. Res. 108(2), 481–487 (2011)

    PubMed  Google Scholar 

  33. F. Boland, Official Methods of Analysis of AOAC International, 16th edn. (AOAC International, Gaithersburg, 1998), p. 200

    Google Scholar 

  34. M. Bourne, Food Texture and Viscosity: Concept and Measurement, 2nd edn. (Elsiver, Amsterdam, 2002), p. 423

    Google Scholar 

  35. S. Khoshnoudi-Nia, M. Moosavi-Nasab, S.M. Nassiri, Z. Azimifar, Food Anal. Methods 11(12), 3481–3494 (2018)

    Google Scholar 

  36. M. Fathi, M. Mohebbi, S.M.A. Razavi, Food Bioprocess Technol. 4(8), 1357–1366 (2011)

    Google Scholar 

  37. ISO, Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Enumeration of Microorganisms: Colony-Count Technique at 30 °C, 1st edn. (Iranian National Standardization Organization, Tehran, 2003), p. 18

    Google Scholar 

  38. D.Y. Fung, in Novel Approaches in Biosensors and Rapid Diagnostic Assays, eds. by Z. Liron, A. Bromberg, M. Fisher, (Springer, Boston, 2000), p. 295–311

  39. M. Nikkhah, M. Hashemi, M.B.H. Najafi, R. Farhoosh et al., Int. J. Food Microbiol. 257, 285–294 (2017)

    CAS  PubMed  Google Scholar 

  40. A.Z. Mahmoudabadi, M.A. Dabbagh, Z. Fouladi, Evid. Based Complement. Altern. Med. (2007). https://doi.org/10.1093/ecam/nel099

    Article  Google Scholar 

  41. M. Mahboubi, F.G. Bidgoli, Phytomedicine 17(7), 548–550 (2010)

    CAS  PubMed  Google Scholar 

  42. P. Dehghani, S.M.H. Hosseini, M.T. Golmakani, M. Majdinasab, S. Esteghlal, Food Hydrocoll. 77, 677–688 (2018)

    CAS  Google Scholar 

  43. M. Cháfer, L. Sánchez-González, C. González-Martínez, A. Chiralt, J. Food Sci. 77(8), E182–E187 (2012)

    PubMed  Google Scholar 

  44. S. Jafarzadeh, S.M. Jafari, A. Salehabadi, A.M. Nafchi, U.S. Uthaya, H.A. Khalil, Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.04.017

    Article  Google Scholar 

  45. INSO, Green raisin-Specification and Test Methods, 1st edn. (Iranian National Standardization Organization, Tehran, 2013), p. 16

    Google Scholar 

  46. T. Baysal, S.E. Bilek, E. Apaydin, Gida 35(4), 245–249 (2010)

    Google Scholar 

  47. D. Hermawan, T.K. Lai, S. Jafarzadeh, D.A. Gopakumar, M. Hasan, F.T. Owolabi, N.S. Aprilia, S. Rizal, H.A. Khalil, Bioresour. 14(2), 3389–3410 (2019)

    CAS  Google Scholar 

  48. S. Misra, S.P. Chattopadhayay, Int. J. Bioresour. Stress Mana. 10(1), 81–86 (2019)

    Google Scholar 

  49. J. Canellas, C. Rossello, S. Simal, L. Soler, A. Mulet, J. Food Sci. 58(4), 805–809 (1993)

    CAS  Google Scholar 

  50. H. Güleç, A. Kundakçi, B. Ergönül, Int. J. Food Sci. Nutr. 60(3), 210–223 (2009)

    PubMed  Google Scholar 

  51. B. Fallico, E. Arena, M. Zappala, Food Chem. 81(4), 569–573 (2003)

    CAS  Google Scholar 

  52. Z. Huang, Q. Wang, L. Xia, J. Hui, J. Li, Y. Feng, Y. Chen, Sci. Hortic. 248, 112–117 (2019)

    CAS  Google Scholar 

  53. INSO, Raisin-Microbiological Specifications and Test Methods, 1st edn. (Iranian National Standardization Organization, Tehran, 2015), p. 15

    Google Scholar 

  54. T. Istirokhatun, MATEC Web Conf. 156, 08009 (2018)

    Google Scholar 

  55. M. Jouki, F.T. Yazdi, A. Mortazavi, A. Koocheki, N. Khazaei, Int. J. Food Microbiol. 174, 88–97 (2014)

    CAS  PubMed  Google Scholar 

  56. S.A. Burt, R.D. Reinders, Lett. Appl. Microbiol. 36(3), 162–167 (2003)

    CAS  PubMed  Google Scholar 

  57. R. Piccaglia, M. Marotti, E. Giovanelli, S. Deans, E. Eaglesham, Ind. Crops Prod. 2(1), 47–50 (1993)

    CAS  Google Scholar 

  58. S. Khoshnoudi-Nia, N. Sharif, S.M. Jafari, Trends Food Sci. Technol. 95, 59–74 (2020)

    CAS  Google Scholar 

  59. A. Nabigol, H. Morshedi, Afr. J. Biotechnol. 10(48), 9864–9869 (2011)

    CAS  Google Scholar 

  60. S. Jafarzadeh, J.W. Rhim, A.K. Alias, F. Ariffin, S. Mahmud, J. Sci. Food Agric. 99(6), 2716–2725 (2019)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Ferdowsi University, Mashhad, Iran (Grant Number: 21382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Sedaghat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youseftabar-Miri, N., Sedaghat, N. & Khoshnoudi-Nia, S. Effect of active edible coating on quality properties of green-raisin and ranking the samples using fuzzy approach. Food Measure 15, 46–58 (2021). https://doi.org/10.1007/s11694-020-00595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00595-x

Keywords

Navigation