Skip to main content
Log in

On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effect of drying methods (sun, oven and shade drying) on aniseeds was investigated in terms of their essential oils, phenolics and antioxidant activities. The optimum yield of essential oil was found in shade drying (2.62%). Fourteen volatile compounds were determined in all samples with variation of the main component proportions depending on drying methods. Thus, trans-anethole (84.21%) and estragole (3.82%) proportions significantly increased in shade drying. The highest total phenol and flavonoid contents of aniseeds were recorded in shade drying (42.70 mg of GAE/g and 53.55 mg of QE/g, respectively) while the lowest contents in oven drying at 60 °C (31.15 mg of GAE/g and 46.20 mg of QE/g, respectively). In all drying methods, naringin (41.04–43.76%), chloroginic acid (23.13–27.19%) and rosmarinic acid (12.26–15.95%) were the predominant phenol compounds. Although shade drying increased the antioxidant activity, aniseed extracts exhibited higher radical scavenging (IC50 = 10.15 µg/mL), reducing power (EC50 = 187.24 µg/mL) and chelating (IC50 = 6.85 mg/mL) capacities than essential oils (IC50 = 114.87 µg/mL, EC50 = 548.05 µg/mL and IC50 = 58.65 mg/mL, respectively). In conclusion, Shade drying method was found to enhance essential oils, phenols and antioxidant activities in aniseeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.V. Diaz-Maroto, E. Sánchez Palomo, L. Castro, G. Viñas, M.S. Perez-Coello, J. Sci. Food Agric. 84, 2070 (2004)

    CAS  Google Scholar 

  2. L.L. Zhang, S. Lv, J.G. Xuc, L.F. Zhang, Nat. Prod. Res. 32, 1184 (2018)

    CAS  PubMed  Google Scholar 

  3. I.H. Sellami, W.A. Wannes, I. Bettaieb, S. Berrima, T. Chahed, B. Marzouk, Food Chem. 126, 691 (2011)

    CAS  Google Scholar 

  4. F. Mirhossein, M. Rahimmalek, A.G. Pirbalouti, M. Taghipoor, J. Essent. Oil Res. 27, 204 (2015)

    Google Scholar 

  5. H. Ayyobi, P. Gholam-Ali, O. Jamal-Ali, Ratar. Povrt. 51, 18 (2014)

    Google Scholar 

  6. M. Śledź, M. Nowacka, A. Wiktor, D. Witrowa-Rajchert, Food Bioprod. Process 91, 421 (2013)

    Google Scholar 

  7. H.P. Garg, J. Prakash, Solar Energy Fundamentals and Applications (Tata McGraw-Hill Publishing Company Limited, New Delhi, India, 2000), p. 434

    Google Scholar 

  8. I. Samojlik, V. Mijatović, S. Petković, B. Škrbić, B. Božin, Fitoterapia 83, 1466 (2012)

    CAS  PubMed  Google Scholar 

  9. A. Özel, Exp. Agric. 45, 117 (2009)

    Google Scholar 

  10. H. Ullah, B. Honermeier, Ind. Crops Prod. 42, 489 (2013)

    CAS  Google Scholar 

  11. A.S. Tepe, B. Tepe, Ind. Crops Prod. 69, 153 (2015)

    Google Scholar 

  12. I. Bettaieb Rebey, S. Bourgou, W. Aidi Wannes, I. Hamrouni Selami, M. Saidani Tounsi, B. Marzouk, M.L. Fauconnier, R. Ksouri, Plant Biosyst. 152, 971 (2018)

    Google Scholar 

  13. I. Bettaieb Rebey, W. Aidi Wannes, S. Ben Kaab, S. Bourgou, M. Saidani Tounsi, R. Ksouri, M.L. Fauconnier, Sci. Hortic. 246, 453 (2019)

    CAS  Google Scholar 

  14. Y. Zaouali, S. Ammar, N. Kechiche, J. Jay, H. Ben Aissia, Eur. Phys. J. Appl. Phys. 52, 11302 (2010)

    Google Scholar 

  15. V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, J. Agric. Food Chem. 50, 3010 (2002)

    CAS  PubMed  Google Scholar 

  16. T. Hanato, H. Kagawa, T. Yasuhara, T. Okuda, Chem. Pharm. Bull. 36, 2090 (1998)

    Google Scholar 

  17. H. Zhao, J. Dong, J. Lu, J. Chen, Y. Li, Y. Shan, W. Fan, G. Gu, J. Agric. Food Chem. 54, 277 (2006)

    Google Scholar 

  18. M. Oyaizu, Jpn. J. Nutr. Diet. 44, 307 (1986)

    CAS  Google Scholar 

  19. M.R. Dehghani Mashkani, K. Larijani, A. Mehrafarin, H. Naghdi Badi, Ind. Crops Prod. 112, 389 (2018)

    CAS  Google Scholar 

  20. N. Ozdemir, Y. Ozgen, M. Kiralan, A. Bayrak, N. Arslan, M. Fawzy Ramadan, J. Food Meas. Charact. 12, 820 (2017)

    Google Scholar 

  21. S. Hazrati, P. Farnia, F. Habibzadeh, S. Mollaei, J. Food Process. Preserv. 42, e13686 (2018)

    Google Scholar 

  22. Y.R. Guo, Y.-M. An, Y.-X. Jia, J.G. Xu, JEOP 21, 1 (2018)

    Google Scholar 

  23. A.G. Pirbalouti, S. Salehi, L. Craker, J. Appl. Res. Med. Aromat. Plants 4, 35 (2017)

    Google Scholar 

  24. K. Saeidi, G. Zohre, S. Rostami Hudson, JEOP 19, 391 (2016)

    CAS  Google Scholar 

  25. M.D. Castro, L.C. Ming, M.O.M. Marques, S.R. Machado, in Proceeding of the 5th National Symposium New Crops and New uses, (Atlanta, USA, 2001), p. 599

  26. F. Sefidkon, K. Abbasi, G.B. Khaniki, Food Chem. 99, 19 (2006)

    CAS  Google Scholar 

  27. Z. Özer, T. Kiliç, S. Selvi, C. Pasa, TEOP 21, 1403 (2018)

    Google Scholar 

  28. European Pharmacopoeia, Dritter Nachtrag, 3rd edn (Council of Europe, Strasbourg, 2000), pp. 499–500

    Google Scholar 

  29. M. Acimovic, V. Tesevic, M. Todosijevic, J. Djisalov, S. Oljaca, Bot. Serb. 39, 9 (2015)

    Google Scholar 

  30. E. Fitsiou, G. Mitropoulou, K. Spyridopoulou, A. Tiptiri-Kourpeti, M. Vamvakias, H. Bardouki, M. Panayiotidis, A. Galanis, Y. Kourkoutas, K. Chlichlia, Molecules 21, 1069 (2016)

    PubMed Central  Google Scholar 

  31. I. Kosalec, S. Pepeljnjak, D. Kustrak, Acta Pharm. 55, 377 (2017)

    Google Scholar 

  32. M.A. Miranda, J. Vega-Gálvez, G. López, M. Parada, M. Sanders, Ind. Crops Prod. 32, 258 (2010)

    CAS  Google Scholar 

  33. S. Hihat, H. Remini, K. Madani, Int. Food Res. J. 24, 503–509 (2017)

    CAS  Google Scholar 

  34. T.C. Tan, L.H. Cheng, R. Bhat, G. Rusul, A.M. Easa, Food Chem. 142, 121 (2015)

    Google Scholar 

  35. P. Van-Hung, Crit. Rev. Food Sci. Nutr. 56, 25 (2016)

    CAS  PubMed  Google Scholar 

  36. S. Multari, J.M. Pihlava, P. Ollennu-Chuasam, V. Hietaniemi, B. Yang, J.P. Suomela, J. Agric. Food Chem. 66, 2900 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. I. Bettaieb, I. Hamrouni-Sellami, S. Bourgou, F. Limam, B. Marzouk, Acta Physiol. Plant. 33, 1103 (2011)

    CAS  Google Scholar 

  38. Y. Choi, S.M. Lee, J. Chun, H.B. Lee, J. Lee, Food Chem. 99, 381 (2006)

    CAS  Google Scholar 

  39. M.A. Alam, N. Subhan, M.M. Rahman, S.J. Uddin, H.M. Reza, S.D. Sarker, Adv. Nutr. 5, 404 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. A.H. Ebrahimabadi, E.H. Ebrahimabadi, Z. Djafari-Bidgoli, F.J. Kashi, A. Mazoochi, H. Batooli, Food Chem. 119, 452e458 (2010)

    Google Scholar 

  41. A. Tomaino, F. Cimino, V. Zimbalatti, V. Venuti, V. Sulfaro, A. DePasquale, Food Chem. 89, 549 (2005)

    CAS  Google Scholar 

  42. K.L. Chong, Y.Y. Lim, J. Food Qual. 35, 51 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iness Bettaieb Rebey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettaieb Rebey, I., Bourgou, S., Ben Kaab, S. et al. On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds. Food Measure 14, 220–228 (2020). https://doi.org/10.1007/s11694-019-00284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00284-4

Keywords

Navigation