Skip to main content
Log in

Identification and quantification of anthocyanins in seeds of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces of varying seed coat pigmentation

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study identified and quantified the anthocyanin pigments in seed of eight Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces of variable seed coat pigmentation. The analysis was carried out using ultra-performance liquid chromatography coupled with a photodiode array detector and mass spectrometry. Although the findings revealed similar anthocyanin profiles in seeds of the eight landraces tested, the relative concentrations of the individual anthocyanin compounds showed marked variations. Delphinidin-3-O-glucoside, cyanidin-3-O-glucoside and peonidin-3-O-glucoside were the most abundant anthocyanins, with concentrations ranging between 21.4–239.0, 23.6–130.6 and 21.4–135.4 µg/g of dry seed, respectively in seeds of the test landraces, while total anthocyanins ranged between 95 and 505 µg/g of dry seed. The preponderance of delphinidin 3-O-glucoside was observed in the black and brown mottled seeds. This study is the first report regarding the profile and concentrations of anthocyanins in Kersting’s groundnut and suggests that the seeds of this underutilized grain legume can potentially be exploited as a natural source of anthocyanins for the development of cosmetic, food and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

KG:

Kersting’s groundnuts

ESI:

Electrospray ionization

LC:

Liquid chromatography

MS:

Mass spectrometry

PDA:

Photodiode array detector

SD:

Standard deviation

TAC:

Total anthocyanin content

UV:

Ultraviolet

Vis:

Visible

References

  1. P. Chivenge, T. Mabhaudhi, A.T. Modi, P. Mafongoya, The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health. 12, 5685–5711 (2015)

    Article  Google Scholar 

  2. R. Adu-Gyamfi, J. Fearon, T. Bayorbor, I. Dzomeku, V. Avornyo, The status of Kersting’s groundnut (Macrotyloma Geocarpum [Harms] Marechal and Baudet) An underexploited legume in Northern Ghana. Outlook Agric. 40, 259–262 (2011)

    Article  Google Scholar 

  3. M. Mohammed, S.K. Jaiswal, E.N. Sowley, B.D. Ahiabor, F.D. Dakora, Symbiotic N2 fixation and grain yield of endangered Kersting’s groundnut landraces in response to soil and plant associated Bradyrhizobium inoculation to promote ecological resource-use efficiency. Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.02105

    Article  PubMed  PubMed Central  Google Scholar 

  4. O. Ajayi, F. Oyetayo, Potentials of Kerstingiella geocarpa as a health food. J. Med. Food 12, 184–187 (2009)

    Article  CAS  Google Scholar 

  5. F.D. Dakora, Nodule function in symbiotic Bambara groundnut (Vigna subterranea L.) and Kersting’s bean (Macrotyloma geocarpum L.) is tolerant of nitrate in the root medium. Ann. Bot. 82, 687–690 (1998)

    Article  CAS  Google Scholar 

  6. P. Assogba, E.B. Ewedje, A. Dansi, Y. Loko, A. Adjatin, M. Dansi, A. Sanni, Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut (Macrotyloma geocarpum (Harms) Maréchal et Baudet) cultivars of Benin. Genet. Resour. Crop Evol. 63, 513–529 (2016)

    Article  Google Scholar 

  7. M.A.T. Ayenan, V.A. Ezin, Potential of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet] and prospects for its promotion. Agric. Food Secur. 5, 10 (2016)

    Article  Google Scholar 

  8. A.H. Bampuori, Effect of traditional farming practices on the yield of indigenous Kersting’s Groundnut (Macrotyloma geocarpum Harms) crop in the Upper West Region of Ghana. J. Dev. Sustain. Agric. 2, 128–144 (2007)

    Google Scholar 

  9. T. Bayorbor, I. Dzomeku, V. Avornyo, M. Opoku-Agyeman, Morphological variation in Kersting’s groundnut (Kerstigiella geocarpa Harms) landraces from northern Ghana. Agric. Biol. JN Am. 1, 290–295 (2010)

    Article  Google Scholar 

  10. M.A. Chauvin, M. Whiting, C.F. Ross, The influence of harvest time on sensory properties and consumer acceptance of sweet cherries. HortTechnology 19, 748–754 (2009)

    Article  Google Scholar 

  11. G.R. Takeoka, L.T. Dao, G.H. Full, R.Y. Wong, L.A. Harden, R.H. Edwards, J.D.J. Berrios, Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 45, 3395–3400 (1997)

    Article  CAS  Google Scholar 

  12. M.-G. Choung, B.-R. Choi, Y.-N. An, Y.-H. Chu, Y.-S. Cho, Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 51, 7040–7043 (2003)

    Article  CAS  Google Scholar 

  13. A. Castaneda-Ovando, M. de Lourdes Pacheco-Hernández, M.E. Páez-Hernández, J.A. Rodríguez, C.A. Galán-Vidal, Chemical studies of anthocyanins: a review. Food Chem. 113, 859–871 (2009)

    Article  CAS  Google Scholar 

  14. P. Hoffmann, Natural edible dye preparation from bean husks giving red shades. Google Patents (1983)

  15. L. Chalker-Scott, Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1–9 (1999)

    Article  CAS  Google Scholar 

  16. H. Matsumoto, Y. Nakamura, S. Tachibanaki, S. Kawamura, M. Hirayama, Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 51, 3560–3563 (2003)

    Article  CAS  Google Scholar 

  17. W.-H. Shin, S.-J. Park, E.-J. Kim, Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci. 79, 130–137 (2006)

    Article  CAS  Google Scholar 

  18. T.C. Wallace, Anthocyanins in cardiovascular disease. Adv. Nutr. 2, 1–7 (2011)

    Article  CAS  Google Scholar 

  19. J.A. Joseph, B. Shukitt-Hale, N.A. Denisova, D. Bielinski, A. Martin, J.J. McEwen, P.C. Bickford, Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 19, 8114–8121 (1999)

    Article  CAS  Google Scholar 

  20. S. Zafra-Stone, T. Yasmin, M. Bagchi, A. Chatterjee, J.A. Vinson, D. Bagchi, Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51, 675–683 (2007)

    Article  CAS  Google Scholar 

  21. K. Koh, J.E. Youn, H.-S. Kim, Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J. Food Sci. Technol. 51, 377–381 (2014)

    Article  CAS  Google Scholar 

  22. Y. Salinas Moreno, G.S. Sánchez, D.R. Hernández, N.R. Lobato, Characterization of anthocyanin extracts from maize kernels. J. Chromatogr. Sci. 43, 483–487 (2005)

    Article  Google Scholar 

  23. M.-K. Kim, H.-A. Kim, K. Koh, H.-S. Kim, Y.S. Lee, Y.H. Kim, Identification and quantification of anthocyanin pigments in colored rice. Nutr. Res. Pract. 2, 46–49 (2008)

    Article  CAS  Google Scholar 

  24. D.-O. Kim, O.K. Chun, Y.J. Kim, H.-Y. Moon, C.Y. Lee, Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 51, 6509–6515 (2003)

    Article  CAS  Google Scholar 

  25. P. Mena, E.M. Sánchez-Salcedo, M. Tassotti, J.J. Martínez, F. Hernández, D. Del Rio, Phytochemical evaluation of eight white (Morus alba L.) and black (Morus nigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSn metabolomic profiles. Food Res. Int. 89, 1116–1122 (2016)

    Article  CAS  Google Scholar 

  26. M.A. Farag, H.A. Gad, A.G. Heiss, L.A. Wessjohann, Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC–MS coupled to chemometrics. Food Chem. 151, 333–342 (2014)

    Article  CAS  Google Scholar 

  27. A.T. Tsamo, P.P. Ndibewu, F.D. Dakora, Phytochemical profile of seeds from 21 Bambara groundnut landraces via UPLC-qTOF-MS. Food Res. Int. 112, 160–168 (2018)

    Article  CAS  Google Scholar 

  28. A.T. Tsamo, H. Mohammed, M. Mohammed, P.P. Ndibewu, F.D. Dakora, Seed coat metabolite profiling of cowpea (Vigna unguiculata L.) accessions from Ghana using UPLC-PDA-QTOF-MS and chemometrics. Nat. Prod. Res. (2018). https://doi.org/10.1080/14786419.2018.1548463

    Article  PubMed  Google Scholar 

  29. E.-S.M. Abdel-Aal, J.C. Young, I. Rabalski, Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 54, 4696–4704 (2006)

    Article  CAS  Google Scholar 

  30. R. Attree, B. Du, B. Xu, Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind. Crops Prod. 67, 448–456 (2015)

    Article  CAS  Google Scholar 

  31. T.N.H. Lai, M.-F. Herent, J. Quetin-Leclercq, T.B.T. Nguyen, H. Rogez, Y. Larondelle, C.M. André, Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chem. 138, 1421–1430 (2013)

    Article  CAS  Google Scholar 

  32. F. Shahidi, M. Naczk, Phenolics in Food and Nutraceuticals (CRC Press, Boca Raton, 2003)

    Google Scholar 

  33. B. Singh, J.P. Singh, A. Kaur, N. Singh, Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res. Int. 101, 1–16 (2017)

    Article  CAS  Google Scholar 

  34. A. López, T. El-Naggar, M. Dueñas, T. Ortega, I. Estrella, T. Hernández, M.P. Gómez-Serranillos, O.M. Palomino, M.E. Carretero, Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 138, 547–555 (2013)

    Article  Google Scholar 

  35. M. Dueñas, C. Martínez-Villaluenga, R.I. Limón, E. Peñas, J. Frias, Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Res. Int. 70, 55–63 (2015)

    Article  Google Scholar 

  36. K.-H. Han, T. Kitano-Okada, J.-M. Seo, S.-J. Kim, K. Sasaki, K.-I. Shimada, M. Fukushima, Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J Funct. Foods. 14, 692–701 (2015)

    Article  CAS  Google Scholar 

  37. X. Wu, R.L. Prior, Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J. Agric. Food Chem. 53, 2589–2599 (2005)

    Article  CAS  Google Scholar 

  38. L.O. Ojwang, L. Dykes, J.M. Awika, Ultra performance liquid chromatography–tandem quadrupole mass spectrometry profiling of anthocyanins and flavonols in cowpea (Vigna unguiculata) of varying genotypes. J. Agric. Food Chem. 60, 3735–3744 (2012)

    Article  CAS  Google Scholar 

  39. E. Pale, M. Nacro, M. Vanhaelen, R. Vanhaelen-Fastré, Anthocyanins from bambara groundnut (Vigna subterranea). J. Agric. Food Chem. 45, 3359–3361 (1997)

    Article  CAS  Google Scholar 

  40. M.-G. Choung, I.-Y. Baek, S.-T. Kang, W.-Y. Han, D.-C. Shin, H.-P. Moon, K.-H. Kang, Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 49, 5848–5851 (2001)

    Article  CAS  Google Scholar 

  41. A.M. Díaz, G.V. Caldas, M.W. Blair, Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 43, 595–601 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the South African Research Chair in Agrochemurgy and Plant Symbioses, the National Research Foundation and the Tshwane University of Technology for financial support. ATT is postdoctoral fellow under the South African Research Chair in Agrochemurgy and Plant Symbioses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Armelle T. Tsamo or Felix D. Dakora.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsamo, A.T., Mohammed, M., Ndibewu, P.P. et al. Identification and quantification of anthocyanins in seeds of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces of varying seed coat pigmentation. Food Measure 13, 2310–2317 (2019). https://doi.org/10.1007/s11694-019-00150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00150-3

Keywords

Navigation