Skip to main content
Log in

Metal bioaccumulation in the soil–leaf–fruit system determined by neutron activation analysis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The determination of macro- and microelements in soil–leaf–fruit systems is extremely important for the quality of the fruits and for consumer health. The content of major and trace elements in selected varieties of fruits (apple, plum, and grape) as well as in leaves and soils samples, collected in the Republic of Moldova, was determined using neutron activation analysis. Soil elemental content allowed evidencing more similarities between the considered soils and the World Average Soil, while the content of trace elements corresponds to average values obtained for microelements in the Republic of Moldova. The content of the main part of the element in apple fruits was higher in comparison with plum and grape fruits. The highest concentration in case of all fruits was obtained for K: 14,500 µg/g (grape), 21,600 µg/g (plum) and 23,700 µg/g (apple). Transfer factors from soils to leaves and fruits as well as from leaves to fruits, the daily intake of metals, and the hazard quotient indices were calculated. The transfer factor calculated for different systems showed large differences between metals. The values for the estimated dietary intakes and hazard quotients for toxic elements (Cr, Co, Fe, Mn, Ni, V, and Zn) were lower than the recommended safety limits by Food and Nutrition Board. Therefore, the analyzed fruits were considered to be safe for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. A Report of the Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine, (National Academy Press, Washington, D.C., 2001).

References

  1. I. Juranović Cindrić, M. Zeiner, M. Kröppl, G. Stingeder, Microchem. J. 99, 364 (2011)

    Article  CAS  Google Scholar 

  2. M. Grembecka, P. Szefer, Environ. Monit. Assess. 185, 9139 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Osmanović, S. Huseinović, Š Goletić, M. Šabanović, S. Zavadlav, Hrana u zdravlju i bolesti. znanstveno-stručni časopis za nutricionizam i dijetetiku 3, 44 (2014)

    Google Scholar 

  4. H. Velasco, A.S. Cid, R.M. Anjos, C.B. Zamboni, M. Rizzotto, D.L. Valladares, J. Juri Ayub, J. Environ. Radioact. 104, 64 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. I. Geana, A. Iordache, R. Ionete, A. Marinescu, A. Ranca, M. Culeac, Food Chem. 138, 1125 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. A. Dehelean, D.A. Magdas, World J (2013). https://doi.org/10.1155/2013/215423

    Article  Google Scholar 

  7. L. Bošković-Rakočević, J. Milivojević, T. Milošević, G. Paunović, Water Air Soil Pollut. 225, 2199 (2014)

    Article  CAS  Google Scholar 

  8. S. Pessanha, M.L. Carvalho, M. Becker, A. von Bohlen, Spectrochim. Acta B 65, 504 (2010)

    Article  CAS  Google Scholar 

  9. A. Michenaud-Rague, S. Robinson, S. Landsberger, J. Radioanal. Nucl. Chem. 291, 237 (2012)

    Article  CAS  Google Scholar 

  10. I. Zinicovscaia, O.G. Duliu, O. Culicov, R. Sturza, C. Bilici, S. Gundorina, Food Anal. Method 10, 3523 (2017)

    Article  Google Scholar 

  11. S. Waheed, N. Siddique, Int. J. Food Sci. Nutr. 60, 333(2009) (2009)

    Article  CAS  PubMed  Google Scholar 

  12. V. Balan, Bull. UASVM. Hortic. 65, 252 (2008)

    Google Scholar 

  13. M.V. Frontasieva, PEPAN 42, 332 (2011)

    Google Scholar 

  14. S.S. Pavlov, A.Yu. Dmitriev, M.V. Frontasyeva, J. Radioanal. Nucl. Chem. 309, 27–38 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y.J. Cui, Y.G. Zhu, R.H. Zhai, D.Y. Chen, Y.Z. Huang, Y. Qiu, J.Z. Liang, Environ. Int. 30, 785–791 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. S.S. Randjelović, D.A. Kostić, B.B. Arsić, G. Stojanović, Adv. Technol. 3(2), 105–110 (2014)

    Google Scholar 

  17. Y.N. Jolly, A. Islam, S. Akbar, SpringerPlus 2, 385 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Intawongse, J.R. Dean, Food Addit. Contam. 23, 36 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. R.L. Rudnick, S. Gao, in Treatise on Geochemistry, ed. by H.D.H.K. Turekian (Elsevier, Oxford, 2003), p. 64

    Google Scholar 

  20. А.P. Vinogradov The Geochemistry of Rare and Dispersed Chemical Elements in Soils (Consultans Bureau, New York, 1959), p. 209

    Google Scholar 

  21. V.P. Kiriliuc, in Biosfera. Filosofia și Medicina în Strategia de Asigurare a Securității Umane (CEP “Medicina”, Chisinau, 2010), pp. 267–270 (in Russian)

    Google Scholar 

  22. F.D. Bora, C.I. Bunea, T. Rusu, N. Pop, Chem. Cent. J. 9, 19 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Albulescu, L. Turuga, S. Masu, S. Uruioc, L.S. Kiraly, Ann. West Univ. Timişoara Ser. Chem. 18(3), 45 (2009)

    CAS  Google Scholar 

  24. Anonymous Soil protection procedures during agricultural practice. Decision nr. 1157/13.10.2008 of the Government of the republic of Moldova. Official Monitor of Moldova. 193–194 of 28.10.2008. (2008) http://lex.justice.md/md/329482/ Accessed 15 Jul 2018 (in Romanian)

  25. V. Angelova, R. Ivanova, K. Ivanov, J. Balk. Ecol. 7, 83 (2004)

    CAS  Google Scholar 

  26. V. Orescanin, A. Katunar, A. Kutle, V. Valkovic, J. Trace Microprobe Tech. 1, 171 (2003)

    Article  CAS  Google Scholar 

  27. I. Zinicovscaia, O.G. Duliu, O.A. Culicov, M.V. Frontasyeva, R. Sturza, Rom. Rep. Phys. 70, 701 (2018)

    Google Scholar 

  28. S.M. Serbula, D.D. Miljkovic, R.M. Kovacevic, A.A. Ilic, Ecotoxicol. Environ. Saf. 76, 209 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. B. Markert, Water Air Soil Pollut. 64, 533 (1992)

    Article  CAS  Google Scholar 

  30. A. Kabata-Pendias, Trace Elements in Soils and Plants (Taylor and Francis Group, Boca Raton, 2011), p. 548

    Google Scholar 

  31. R. Kastori, Physiology of Plants (Feljton, Novi Sad, 1998)

    Google Scholar 

  32. S. Murtić, D. Brković, M. Đurić, I. Vujinović, Acta Agric. Serb. 38, 123 (2014)

    Article  Google Scholar 

  33. K. Skordas, G. Papastergios, A. Filippidis, Environ. Monit. Assess. 185, 8465 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. J.A. Amorós, C. Pérez-de-los, F.J.G. Reyes, S. Navarro, J.L. Bravo, J. Chacón, R.J. Martínez, Ballesta, J. Plant Nutr. Soil Sci. 176, 843 (2013)

    Article  CAS  Google Scholar 

  35. D. Bertoldi, R. Larcher, M. Bertamini, S. Otto, G. Concheri, G. Nicolini, J. Agric. Food Chem. 59, 7224 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Zinicovscaia.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinicovscaia, I., Sturza, R., Gurmeza, I. et al. Metal bioaccumulation in the soil–leaf–fruit system determined by neutron activation analysis. Food Measure 13, 592–601 (2019). https://doi.org/10.1007/s11694-018-9972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9972-4

Keywords

Navigation