Skip to main content
Log in

Changes in physical properties and relations with allicin degradation during convective drying of garlic

  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this work was to establish the relationship between the physical properties and the ability to retain precursors of allicin into the structural matrix of garlic during convective drying. The study evaluated the retention of allicin and its relation to changes in the structural properties: apparent density (ρb), true density (ρp), porosity (ε) and shrinkage (Sb) during the garlic drying process. Drying kinetics, structural properties (SP) and allicin content (AC) were determined in garlic slices subjected to drying temperatures of 50 and 60 °C with airflow of 1.5 m/s. To calculate structural properties, the experimental data volume of the solid was determined using volumetric displacement and gas stereopycnometer methods. The AC was determined by the HPLC method. Data were correlated using Pearson’s equation. The results showed a strong relationship between AC and Sb, ρp and ρb, while a weak relation to the Ɛ was found for both temperatures. The kinetics showed two stages, the first showed a rapid increase in the ρp, ρb and Sb, according to the loss of allicin. In the second, the increase of ρp, ρb and Sb remained without significant losses of allicin. The results suggest that a denser structure prevents the penetration of oxygen through the solid reducing the degradation of bioactive compounds during the first stage. Both, the temperature and changes in the SP affect the retention of allicin. The drying temperature of 60 °C can induce more rapid shrinkage and dense structures and partially inactivate the enzyme alliinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AC:

Allicin content (mg allicin/gds)

m:

Mass (kg)

ms−a :

Mass of the solid in air (kg)

ms−l :

Mass of the solid in an immersion liquid (kg)

V:

Volume (m3)

W:

Sample weight (kgdb)

X:

Moisture content (gw/gds)

ε:

Porosity

ρb :

Apparent density (kg/m3)

ρp :

True density (kg/m3)

ρl :

Density of the immersion liquid (kg/m3)

o:

Initial

s:

Dry solid

w:

Water

References

  1. J. Borlinghaus, F. Albrecht, M.H. Gruhlke, I.D. Nwachukwu, A.J. Slusarenko, Molecules 19, 8 (2014)

    Article  Google Scholar 

  2. M.G. Jones, H.A. Collin, A. Tregova, L. Trueman, L. Brown, R. Cosstick, J. Hughes, J. Milne, M.C. Wilkinson, A.B. Tomsett, B Thomas, Med. Arom. Plant. Sci. Biotechnol. 1, 1 (2007)

    Google Scholar 

  3. L.D. Lawson, C.D. Gardner, J. Agric. Food Chem 53, 16 (2005)

    Google Scholar 

  4. M.E. Rybak, E.M. Calvey, J.M. Harnly, J. Agric. Food. Chem. 52, 4 (2004)

    Article  Google Scholar 

  5. J.M. Aguilera, J. Food Eng. 67, 2 (2005)

    Google Scholar 

  6. N. Martins, S. Petropoulos, I.C.F.R. Ferreira, Food Chem. 211, 41 (2016)

    Article  CAS  Google Scholar 

  7. L.D. Lawson, in The Composition and Chemistry of Garlic Cloves and Processed Garlic, ed. by H.P. Koch, L.A. Lawson (Wilkins, Baltimore, 1996), pp. 10–37

    Google Scholar 

  8. H.A. Collin, in Garlic and Cardiovascular Disease, ed. by A. Arnoldi, F. Dodds (Woodhead Publishings, Cambridge, 2005)

    Google Scholar 

  9. J.E. Lancaster, M.L. Shaw, E.F. Walton, Phytochemistry 55, 2 (2000)

    Article  Google Scholar 

  10. J.M. Aguilera, D.W. Stanley, in Simultaneous Heat and Mass Transfer Dehydration, ed. by J.M. Aguilera, D.W. Stanley (Aspen Publishers, Gaithersburg, 1999), pp. 373–411

    Google Scholar 

  11. N. Harnkarnsujarit, S. Charoenrein, Food Res. Int. 44, 10 (2011)

    Article  Google Scholar 

  12. A. López-Ortiz, J. Rodríguez-Ramírez, L.L. Méndez-Lagunas, Int. J. Food Proper 16, 7 (2013)

    Article  Google Scholar 

  13. R.S. Aware, B.N. Thorat, An Int. J. 29, 13 (2011)

    Google Scholar 

  14. P. Prati, C.M. Henrique, A.S.D. Souza, V.S.N.D. Silva, M.T.B. Pacheco, Food Sci. Technol. 34, 3 (2014)

    Google Scholar 

  15. J.E. Lozano, E. Rostein, M.J. Urbicain, J. Food Sci. 48, 1497 (1983)

    Article  Google Scholar 

  16. P.S. Madamba, R.H. Driscoll, K.A. Buckle, J. Food Eng. 23, 309 (1994)

    Article  Google Scholar 

  17. N.P. Zogzas, Z.B. Maroulis, D. Marinos- Kouris, Drying Technol. 12, 7 (1994)

    Google Scholar 

  18. J. Rodríguez-Ramírez, L. Méndez-Lagunas, A. López-Ortiz, S. Torres-Sandoval, J. Food Sci. 77, R146 (2012)

    Article  Google Scholar 

  19. A. Martynenko, Drying Technol. 32, 11 (2014)

    Google Scholar 

  20. S. Khalloufi, A. Kharaghani, C. Almeida-Rivera, J. Nijsse, G. Dalen, E. Tsotsas, Trends Food Sci. Technol. 45, 179 (2015)

    Article  CAS  Google Scholar 

  21. A. López-Ortiz, J. Rodríguez-Ramírez, L.L. Méndez-Lagunas, J. Food Sci. 81, 1 (2016)

    Article  Google Scholar 

  22. L.L. Méndez-Lagunas, F. Castaigne, Food Chem. 111, 56 (2008)

    Article  Google Scholar 

  23. AOAC, in Official Methods of Analysis. (Association of Official Analytical Chemists, Inc, Virginia, 1990)

    Google Scholar 

  24. M.K. Krokida, Z.B. Maroulis, Drying Technol. 15, 10 (1997)

    Article  Google Scholar 

  25. N.N Mohsenin, Mol. Nutr. 31, 7 (1987)

    Google Scholar 

  26. M.S. Rahman, C.O. Perera, X.D. Chen, R.H. Driscoll, P.L. Potluri, J. Food Eng. 30, 435 (1996)

    Article  Google Scholar 

  27. L. Lawson, S. Wood, B. Hughes, Plant. Med. 57, 263 (1991)

    Article  CAS  Google Scholar 

  28. M.S. Ratti, M. Araya-Farias, L.L. Mendez-Lagunas, J. Makhlouf, Drying Technol. 25, 2 (2007)

    Article  Google Scholar 

  29. L.D. Lawson, in Bioactive Organosulfur Compounds of Garlic and Garlic Products: Role in Reducing Blood Lipids, ed. by A.D. Kinghorn, M.F. Balandrin (American Chemistry Society, Washington, 1993), pp. 306–330

    Google Scholar 

  30. M. Alonzo-Macías, A. Cardador-Martínez, S. Mounir, G. Montejano-Gaitán, K. Allaf, J. Food Res. 2, 2 (2013)

    Article  Google Scholar 

  31. C.J. Boukouvalas, M. Krokida, Z. Maroulis, D. Marinos-Kouris, Int. J. Food Proper 9, 4 (2006)

    Google Scholar 

  32. Y. Choi, M.R. Okos, in Effects of Temperature and Composition on the Thermal Properties of Foods, ed. by L. Le, Jelen (Elsevier, New York, 1986)

    Google Scholar 

  33. R.E. Franklin, Trans. Faraday Soc. 45, 668 (1949)

    Article  CAS  Google Scholar 

  34. M.S. Rahman, Drying Technol. 19, 1 (2001)

    Article  CAS  Google Scholar 

  35. K. Suzuki, K. Kubota, T. Hasegawa, H. Hosaka, J. Food Sci. 41, 5 (1976)

    Google Scholar 

  36. M.A. Hussain, M.S. Rahman, C.W. Ng, J. Food Eng. 51, 3 (2002)

    Article  Google Scholar 

  37. S. Achanta, M.R. Okos, Drying Technol. 14, 6 (1996)

    Article  Google Scholar 

  38. M.S. Rahman, Drying Technol. 23 (2005)

  39. J. Hundal, P.S. Takhar, Biosyst. Eng. 106, 2 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CONACyT (scholarship 366902), SIP20144638, and the COFAA of the Instituto Politécnico Nacional for the facilities provided to carry out this investigation, and their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to López-Ortiz Anabel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilia, ML., Juan, RR., David, RV. et al. Changes in physical properties and relations with allicin degradation during convective drying of garlic. Food Measure 11, 1227–1232 (2017). https://doi.org/10.1007/s11694-017-9499-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9499-0

Keywords

Navigation