Skip to main content
Log in

Determination of trace levels of cobalt ion in different real samples using dispersive liquid–liquid microextraction followed by flame atomic absorption spectrometry

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Dispersive liquid–liquid microextraction technique followed by flame atomic absorption spectrometry was used for preconcentration and determination of trace levels of Co(ІІ) in different real samples. Cobalt ion was first complexed by diethyldithiocarbamate (DDTC) followed by the extraction of resulting complex into the extraction solvent by dispersive liquid–liquid microextraction (DLLME). In DLLME, a mixture of 1.5 mL of methanol (as disperser solvent) containing 50 µL of carbon tetrachloride (as extraction solvent) was rapidly injected into the sample solution to extract the hydrophobic complex of Co-DDTC complex. Under the optimum conditions, the calibration curve was linear in the range of 40–300 µg L−1 of Co(ІІ) with a correlation coefficient of 0.9966. The relative standard deviation based on six replicate analysis of 100 µg L−1 of Co(ІІ) was 3.6% and the detection limit was 6.6 µg L−1. The accuracy of the proposed method was evaluated by the analysis of a certified reference material. Also, the proposed method was successfully applied for determination of trace levels of Co(ІІ) in different water, spinach leaves, black and green tea and tomato sauce samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Czarnek, S. Terpiłowska, A.K. Siwicki, Cent. Eur. J. Immunol. 40(2), 236–242 (2015)

    Google Scholar 

  2. G. Wang, X. Shen, J. Yao, D. Wexler, J.H. Ahn, Electrochem. Commun. 11(3), 546–549 (2009)

    Google Scholar 

  3. A. Marti, Injury 31(4), 18–21 (2000)

    Google Scholar 

  4. D.N. Srivastava, N. Perkas, G.A. Seisenbaeva, Y. Koltypin, V.G. Kessler, A. Gedanken, Ultrason. Sonochem. 10(1), 1–9 (2003)

    Google Scholar 

  5. M. Llusar, A. Forés, J.A. Badenes, J. Calbo, M.A. Tena, G. Monrós, J. Eur. Ceram. Soc. 21(8), 1121–1130 (2001)

    Google Scholar 

  6. S.S. Abdl El Rehim, S.M. Abd El Wahaab, M.A.M. Ibrahim, M.M. Dankeria, J. Chem. Technol. Biotechnol. 73(4), 369–376 (1998)

    Google Scholar 

  7. M. Eftekhari, F. Javedani, M. Chamsaz, Food Anal. Methods 9, 1985–1992 (2016)

    Article  Google Scholar 

  8. S.M. Sorouraddin, S. Nouri, Anal. Methods 8, 1396–1404 (2016)

    Article  CAS  Google Scholar 

  9. P. Liang, J. Yu, E. Yang, Y. Mo, Food Anal. Methods 7, 1506–1512 (2014)

    Article  Google Scholar 

  10. L. Ranjbar, Y. Yamini, A. Saleh, S. Seidi, M. Faraji, Microchim. Acta 177, 119–127 (2012)

    Article  CAS  Google Scholar 

  11. L. Xia, B. Hu, Z. Jiang, Y. Wu, Y. Liang, Anal. Chem. 76(10), 2910–2915 (2004)

    Google Scholar 

  12. M. Chamsaz, M. Eftekhari, A. Eftekhari, A. Yekkebashi, Environ. Monit. Assess. 185(11), 9067–9075 (2013)

    Google Scholar 

  13. M. Rajabi, S. Asemipour, B. Barfi, M.R. Jamali, M. Behzad, J. Mol. Liq. 194, 166–171 (2014)

    Article  CAS  Google Scholar 

  14. Z.A. Alothman, M.A. Habila, E. Yilmaz, N.M. Al-Harbi, M. Soylak, Int. J. Environ. Anal. Chem. 95(14), 1311–1320 (2015)

    Google Scholar 

  15. N. Khorshidi, A. Niazi, Sep. Sci. Technol. 51(10), 1675–1683 (2016)

    Google Scholar 

  16. F. Hasanpour, H. Hadadzadeh, M. Taei, M. Nekouei, E. Mozafari, Environ. Monit. Assess. 188, 265–271 (2016)

    Article  Google Scholar 

  17. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116(1–2), 1–90 (2006)

    Google Scholar 

  18. M. Chamsaz, M. Eftekhari, M. Tafreshi, A. Yekkebashi, A. Eftekhari, Int. J. Environ. Anal. Chem. 94(4), 348–355 (2014)

    Google Scholar 

  19. M. Eftekhari, M. Chamsaz, M.H. Arbab Zavar, A. Eftekhari, Environ. Monit. Assess. 187, 4129–4136 (2015)

    Article  Google Scholar 

  20. M. Chamsaz, M. Eftekhari, A. Atarodi, S. Asadpour, M. Ariani, J. Braz. Chem. Soc. 23(9), 1630–1635 (2012)

    Article  CAS  Google Scholar 

  21. F. Javedani Asleh, M. Eftekhari, M. Chamsaz, Spectrosc. Lett. 49(6), 420–425 (2016)

    Article  CAS  Google Scholar 

  22. D. Citak, M. Tuzen, Food Chem. Toxicol. 48(5), 1399–1404 (2010)

    Google Scholar 

  23. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H.R. Rajabi, M. Soylak, J. Hazard. Mater. 150, 533–540 (2008)

    Article  CAS  Google Scholar 

  24. D. Afzali, S. Zia Mohammadi, Environ. Chem. Lett. 9, 115–119 (2011)

    Article  CAS  Google Scholar 

  25. P.X. Baliza, L.S.G. Teixeira, V.A. Lemos, Microchem. J. 93, 220–224 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding was provided by Islamic Azad University Central Tehran Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. M. Sarrafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beikzadeh, E., Sarrafi, A.H.M. Determination of trace levels of cobalt ion in different real samples using dispersive liquid–liquid microextraction followed by flame atomic absorption spectrometry. Food Measure 11, 994–1002 (2017). https://doi.org/10.1007/s11694-017-9474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9474-9

Keywords

Navigation