Skip to main content
Log in

Nutritional composition and in-vitro antioxidant properties of two cultivars of Indian saffron

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study Crocus sativus L. stigmas obtained from two ecogeographical zones of Jammu and Kashmir, India were evaluated for proximate composition and antioxidant assays. Protein, carbohydrate and caloric value were slightly higher in Kishtwar Jammu cultivar (J) while, moisture, fat and ash contents were higher in Pampore pulwama (K) cultivar but, the difference was non-significant (P > 0.05). In vitro antioxidant assays of methanolic extracts of the C. sativus stigma samples of the two cultivars was evaluated by total phenolic contents (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity (ABTS), ferric reducing antioxidant power (FRAP), ferrous ion-chelating potential (metal chelating activity)and the lipid peroxidation methods at different concentrations (100, 200 and 300 µg/mL). The results showed that TPC, ABTS, FRAP values were significantly higher in J cultivar (P < 0.05) while, DPPH, reducing power, ferrous ion-chelating potential and lipid peroxidation were slightly higher but the difference was non-significant (P > 0.05). The study concluded that saffron from Kishtwar Jammu showed strong antioxidant potential than pampore pulwama cultivar. Thus the selections of saffron from different ecogeographical zones of Jammu and Kashmir are heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

ABTS:

2,2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

TPTZ:

2,4,6-Tripyridyl-s-triazine

FRAP:

Ferric reducing antioxidant power

TPC:

Total phenolic content

TBA:

Thiobarbituric acid

BHT:

Butylated hydroxyl toluene

MDA:

Malonyldialdehyde

References

  1. P. Goldblatt, T.J. Davies, J.C. Manning, M. van der Bank, V. Savolainen, Hylogeny of Iridaceae subfamily Crocoideae based on a combined multigene plastid DNA analysis. Aliso 22, 399–411 (2006)

    Google Scholar 

  2. F. Gresta, Saffron, an alternative crop for sustainable agricultural systems. A review. Agron. Sustain. Dev. 28, 95–112 (2007)

    Article  CAS  Google Scholar 

  3. R. Sánchez-Vioquea, M.F. Rodríguez-Condea, J.V. Reina-Urenaa, M.A. Escolano-Terceroa, D.O. Herraiz-Pe˜nalvera, M.A. Santana-Méridas, In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Ind. Crops Prod. 39, 149–153 (2012)

    Article  CAS  Google Scholar 

  4. C. Ulbricht, J. Conquer, D. Costa, W. Hollands, C. Iannuzzi, R. Isaac, J.K. Jordan, N. Ledesma, C. Ostroff, J.M. GrimesSerrano, M.D. Shaffer, M. Varghese, An evidence-based systematic review of saffron (Crocus sativus) by the natural standard research collaboration. J. Diet. 8, 58–114 (2011)

    Article  CAS  Google Scholar 

  5. K. Sano, H. Himeno, In vitro proliferation of saffron (Crocus sativus L.) stigma. Plant Cell Tissue Organ Cult. 11, 159–166 (1987)

    Article  Google Scholar 

  6. A.M. Husaini, M.A. Bhat, A.N. Kamili, M.A. Mir, Kashmir saffron in crisis. Curr. Sci. 104, 686–687 (2013)

    Google Scholar 

  7. M. Carmona, A. Zalacain, G.L. Alonso, The chemical composition of saffron: colour, taste and aroma, 1st edn. (Albacete, Bomarzo, 2006)

    Google Scholar 

  8. A. Gismondi, M. Serio, L. Canuti, A. Canini, Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am. J. Plant Sci. 3, 1573–1580 (2012)

    Article  CAS  Google Scholar 

  9. S.R. Sampathu, S. Shivashavikars, Y.S. Lewis, Saffron (Crocus sativus Linn.) cultivation, processing, chemistry and standardization. Crit. Rev. Food Sci. Nutr. 20, 123–157 (1984)

    Article  CAS  Google Scholar 

  10. F.I. Abduyaev, Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227, 20–25 (2002)

    Google Scholar 

  11. J.A. Fernández, Biology, biotechnology and biomedicine of saffron. Recent Res. Dev. Plant Sci. 2, 127–159 (2004)

    Google Scholar 

  12. J.A. Fernández, Anticancer properties of saffron: Crocus sativus Linn. Lead molecules from natural products: discovery and new trends. Adv. Phytomed. 2, 313–330 (2006)

    Article  Google Scholar 

  13. M. Ajami, S. Eghtesadi, H. Pazoki-Toroudi, R. Habibey, A.E. Soltan, Effect of Crocus sativus on gentamicin induced nephrotoxicity. Biol. Res. 43, 83–90 (2010)

    Article  Google Scholar 

  14. C.D. Kanakis, P.A. Tarantilis, H.A. Tajmir Riahi, M.G. Polissiou, Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. J. Agric. Food Chem. 55, 970–977 (2007)

    Article  CAS  Google Scholar 

  15. S.A. Ordoudi, C.D. Befani, N. Nenadis, G.G. Koliakos, M.Z. Tsimidou, Further examination of antiradical properties of Crocus sativus stigmas rich in crocins. J. Agric. Food Chem. 57, 3080–3086 (2009)

    Article  CAS  Google Scholar 

  16. E. Moshiri, A.A. Basti, A.A. Noorbala, A.H. Jamshidi, S.H. Abbasi, S. Akhondzadeh, Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomed. 13, 607–611 (2006)

    Article  Google Scholar 

  17. H. Hosseinzadeh, H.H.M. Younesi, Antinocicetive and anti-inflammatory effects of Crocus sativus L. stigma and petals extracts in mice. BMC Pharmacol. 2, 1–8 (2002)

    Google Scholar 

  18. C.Y. Li, E.J. Lee, T.S. Wu, Antityrosinase principles and constituents of the petals of Crocus sativus. J. Nat. Prod. 67, 437–440 (2004)

    Article  CAS  Google Scholar 

  19. S.A.H. Goli, F. Mokhtari, R. Mehdi, Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. J. Agric. Sci. 4, 2010–2012 (2012)

    Google Scholar 

  20. J.A. Fernandez, Biology, biotechnology and biomedicine of saffron. Recent Res. Dev. Plant Sci. 2, 127–159 (2004)

    CAS  Google Scholar 

  21. AOAC, Official methods of analysis, 16th edn. (Association of Official Analytical Chemists, Arlington, 1995)

    Google Scholar 

  22. M.N. Sato, S. Fujwara, H. Tsuchiya, T. Fujii, M. Linuma, H. Tosa, Y. Ohkaw, Flavones with antibacterial activity against carcinogenic bacteria. J. Ethnopharmocol. 54, 171–176 (1996)

    Article  CAS  Google Scholar 

  23. M. Joyeux, A. Lobstein, F. Mortier, Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from Gingko and some flavonoids. Planta Med. 61, 126–129 (1995)

    Article  CAS  Google Scholar 

  24. G.C. Yen, H.Y. Chen, Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43, 27–32 (1995)

    Article  CAS  Google Scholar 

  25. H.E. Muller, Detection of hydrogen peroxide produced by microorganism on ABTS peroxidase medium. Zentralblatt fur Bakteriol. Mikrobiol. Hyg. 259, 151–158 (1985)

    CAS  Google Scholar 

  26. I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)

    Article  CAS  Google Scholar 

  27. R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402 (2000)

    Article  CAS  Google Scholar 

  28. P. Carter, Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 40, 450–458 (1971)

    Article  CAS  Google Scholar 

  29. T. Osama, M. Namiki, A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves. Agric. Biol. Chem. 45, 735–739 (1981)

    Article  Google Scholar 

  30. ISO 3632, Saffron (Crocus sativus L.). Part 1: specification, part 2: test methods (International Organization for Standardization, Geneva, 2011)

    Google Scholar 

  31. L.N. Bell, Moisture effects on food’s chemical stability, in Water activity in foods: fundamentals and applications, ed. by G.V. Barbosa-Ca´no-vas, A.J. Fontana, S.J. Schmidt, T.P. Labuza (Blackwell Publishing Ltd, Oxford, 2008), pp. 173–198

    Google Scholar 

  32. DRIs, Dietary references intakes: food and nutrition board, institute of medicine. (National Academies of Sciences, National Academy Press, 2012). http://ods.odih.gov/health_information/dietary_reference_intakes.aspx. 15 May 2012

  33. J. Serrano-Dıaz, A.M. Sanchez, M. Martınez-Tome´, P. Peter Winterhalter, G.L.A. Alonso, A contribution to nutritional studies on Crocus sativus flowers and their value as food. J. Food Compos. Anal. 31, 101–108 (2013)

    Article  CAS  Google Scholar 

  34. Y.S. Lewis, S.R. Sampathu, S. Shivashankar, C.P. Natarajan, Quality evaluation of saffron. Ind. Arecanutn Spices Cacoa J. 4, 113–115 (1981)

    Google Scholar 

  35. A. Othman, A. Ismail, N. Abdul Ghani, I. Adenan, Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 100, 1523–1530 (2007)

    Article  CAS  Google Scholar 

  36. R. Sariri, R. Sabbaghzadeh, F. Poumohamad, In-vitro antioxidant and anti-tyrosinase activity of methanol extracts from Crocus sativus flowers. Pharmacologyonline 3, 1–11 (2011)

    Google Scholar 

  37. E. Karimi, E. Oskoueian, R. Hendra, H.Z.E. Jaafar, Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15, 6244–6256 (2010). doi:10.3390/molecules15096244

    Article  CAS  Google Scholar 

  38. I.C. Jang, J.H. Park, E.J. Park, H.R. Park, S.C. Lee, Antioxidative and antigenotoxic activity of extracts from cosmos (Cosmos bipinnatus) flowers. Plant Foods Hum. Nutr. 63, 205–210 (2008)

    Article  Google Scholar 

  39. K. Shimada, K. Fujikawa, K. Yahara, T. Nakamura, Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945–948 (1992)

    Article  CAS  Google Scholar 

  40. S. Rahaiee, S. Moini, M. Hashemi, S.A. Shojaosadati, Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.). J. Food Sci. (2014). doi:10.1007/s13197-013-1238-x

    Google Scholar 

  41. V. Katalinic, S.S. Mozina, I. Generalic, D. Skroza, I. Ljubenkov, A. Klancnik, Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int. J. Food Prop. 16(1), 45–60 (2014)

    Article  CAS  Google Scholar 

  42. K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65–87 (2011)

    Article  CAS  Google Scholar 

  43. G. Acar, N.M. Dogan, M.E. Duru, I. Kıvrak, Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. Afr. J. Microb. Res. 4(11), 1154–1161 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad A. Rather.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, S., Rather, S.A., Khan, K.Z. et al. Nutritional composition and in-vitro antioxidant properties of two cultivars of Indian saffron. Food Measure 10, 185–192 (2016). https://doi.org/10.1007/s11694-015-9292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9292-x

Keywords

Navigation