Skip to main content

Advertisement

Log in

Development and applicability of an agarose-based tart cherry phantom for computer tomography imaging

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Computer tomography (CT) imaging is an effective method for in vivo characterization of object internal attributes including fresh agro-food product quality. Limitations to move CT technology forward into the development of an inline system include the lack of standardized tools (phantoms) for image quality analysis, cross-sharing, and consistent evaluation. The objective of this study was to develop a set of agarose phantoms suitable for detection of pit and pit fragments using CT imaging. Efficiently sorting out these undesirable features during handling and processing will be extremely beneficial to the tart cherry industry. These phantoms can be used on several CT devices (including ultra-fast CT systems) to quantify CT performance, reproducibility, and applicability. This article describes how the phantoms were created, using agarose, a broadly available and inexpensive material. Developed phantoms allow for the measurement of CT image parameters that are relevant to detect fresh cherry pits and/or pit fragments and helps in the development of inline CT equipment. Measured phantom CT image parameters include simulated flesh and embedded pit X-ray CT attenuation properties (HU-values), which are statistically similar (p = 0.05) to fresh tart cherries. In addition, using CT images, pit and pit fragment size can be inferred with a high accuracy rate (R = 0.99, p value <0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. BrightSpeed® and Volara® are registered Trademarks of General Electric Healthcare.

Abbreviations

2D:

Two-dimensional image

3D:

Three-dimensional image

ANOVA:

Analysis of variance

CT:

Computed tomography

DICOM:

Digital imaging and communications in medicine

DM:

Digital measurements

GPU:

Graphical processing unit

GTM:

Ground-truth measurements

HU:

Hounsfield units

kV:

Kilovolt

mA:

Milliamperage

MRI:

Magnetic resonance imaging

PLs:

Profile-lines

px:

Pixel

References

  1. A.H. Aitkenhead, C.G. Rowbottom, R.I. Mackay, Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck. Phys Med Biol 58, 6915–6929 (2013)

    Article  CAS  Google Scholar 

  2. S. Arnott, A. Fulmer, W.E. Scott, I.C.M. Dea, R. Moorhouse, D.A. Rees, The agarose double helix and its function in agarose gel structure. J Mol Biol 90, 269–284 (1974)

    Article  CAS  Google Scholar 

  3. E.G. Barcelon, S. Tojo, K. Watanabe, X-ray computer tomography for internal quality evaluation of peaches. J Agric Eng Res 73, 323–330 (1999)

    Article  Google Scholar 

  4. E.G. Barcelon, S. Tojo, K. Watanabe, Relating X-ray absorption and some quality characteristics of mango fruit (Mangifera indica L.). J Agric Food Chem 47, 3822–3825 (1999)

    Article  CAS  Google Scholar 

  5. B.A. Birnbaum, N. Hindman, J. Lee, J.S. Babb, Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242, 109–119 (2007)

    Article  Google Scholar 

  6. J.T. Bushberg, J.A. Seibert, E.M. Leidholdt, J.M. Boone, The essential physics of medical imaging, 2 (Lippincott Williams & Wilkins, Philadelphia, 2002)

    Google Scholar 

  7. I.R. Donis-González, D.E. Guyer, A. Pease, Application of response surface methodology to systematically optimize image quality in computer tomography: a case study using fresh chestnuts (Castanea spp.). Comput Electron Agric 87, 94–107 (2012)

    Article  Google Scholar 

  8. I.R. Donis-González, D.E. Guyer, A. Pease, D.W. Fulbright, Relation of computerized tomography Hounsfield unit measurements and internal components of fresh chestnuts (Castanea spp.). Postharvest Biol Technol 64, 74–82 (2012)

    Article  Google Scholar 

  9. F. Fischer, D. Hoppe, E. Schleicher, G. Mattausch, H. Flaske, R. Bartel, U. Hampel, An ultra fast electron beam x-ray tomography scanner. Meas Sci Technol 19, 094002 (2008)

    Article  Google Scholar 

  10. N.L. Ford, M.M. Thornton, D.W. Holdsworth, Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30, 2869–2877 (2003)

    Article  CAS  Google Scholar 

  11. J.H. Fromm, I. Sautter, D. Matthies, J. Kremer, P. Schumacher, C. Ganter, Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiol 127, 416–425 (2001)

    Article  CAS  Google Scholar 

  12. M.F.I. Furnols, M.F. Teran, M. Gispert, Estimation of lean meat content in pig carcasses using X-ray computed tomography and PLS regression. Chemometr Intell Lab Syst 98, 31–37 (2009)

    Article  Google Scholar 

  13. R.P. Haff, E.S. Jackson, T.C. Pearson, Non-destructive detection of pits in dried plums. Appl Eng Agric 21, 1021–1026 (2005)

    Article  Google Scholar 

  14. R. Hanke, T. Fuchs, N. Uhlmann, X-ray based methods for non-destructive testing and material characterization. Nucl Instrum Method Phys Res A 591, 14–18 (2008)

    Article  CAS  Google Scholar 

  15. K. Horner, M. Islam, L. Flygare, K. Tsiklakis, E. Whaites, Basic principles for use of dental cone-beam computed tomography: consensus guidelines of the European Academy of Dental and Maxillofacial Radiology. Dentomaxillofac Radiol 38, 187–195 (2009)

    Article  CAS  Google Scholar 

  16. N. Kotwaliwale, P.R. Weckler, G.H. Brusewitz, X-ray attenuation coefficient using polychromatic X-ray Imaging of pecan components. Biosyst Eng 94, 199–206 (2006)

    Article  Google Scholar 

  17. J. Lammertyn, T. Dresselaers, P.V. Hecke, P. Jacsók, M. Wever, B. Nicolaï, MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears. Reson Imaging 21, 805–815 (2003)

    Article  CAS  Google Scholar 

  18. T.C. Leskey, S.E. Wright, Host preference of the plum curculio. Entomol Exp Appl 123, 217–227 (2007)

    Article  Google Scholar 

  19. D. Lynam, C. Peterson, R. Maloney, D. Shahriari, A. Garrison, S. Saleh, S. Mehrotra, C. Chan, J. Sakamoto, Augmenting protein release from layer- by-layer functionalized agarose hydrogels. Carbohydr Polym 103, 377–384 (2013)

    Article  Google Scholar 

  20. F. Mendoza, P. Verboven, H.K. Mebatsion, G. Kerckhofs, M. Wevers, B. Nicolai, Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta 226, 559–570 (2007)

    Article  CAS  Google Scholar 

  21. National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United States Department of Agriculture (USDA) (2012) Cherry Production. ISSN:1948-9072

  22. L.R. Ott, M. Longnecker, An introduction to statistical methods and data analysis, vol. 5 (Duxbury, Pacific Grove, 2001)

    Google Scholar 

  23. S. Philip, Review. agarose gels: properties and use for electrophoresis. Electrophoresis 4, 375–382 (1983)

    Article  Google Scholar 

  24. G. Pratx, L. Xing, GPU computing in medical physics: a review. Med Phys 38, 2685 (2011)

    Article  Google Scholar 

  25. J. Qin, R. Lu, Detection of pits in tart cherries by hyperspectral transmission imaging. Trans ASAE 48, 1963–1970 (2005)

    Article  Google Scholar 

  26. S. Remón, A. Ferrer, P. López-Buesa, R. Oria, Atmosphere composition effects on Burlat cherry colour during cold storage. J Sci Food Agric 84, 140–146 (2004)

    Article  Google Scholar 

  27. J. Sornsrivichai, T. Yantarasri, K. Kalayanamitra, Nondestructive techniques for quality evaluation of pineapple fruits. Acta Hort 529, 337–341 (2000)

    Google Scholar 

  28. S. Tsukagoshi, T. Ota, M. Fujii, M. Kazama, M. Okumura, T. Johkoh, Improvement of spatial resolution in the longitudinal direction for isotropic imaging in helical CT. Phys Med Biol 52, 791–801 (2007)

    Article  Google Scholar 

  29. P. Verboven, G. Kerckhofs, H.K. Mebatsion, Q.T. Ho, K. Temst, M. Wevers, P. Cloetens, B.M. Nicolai, Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography. Plant Physiol 147, 518–527 (2008)

    Article  CAS  Google Scholar 

  30. J. Xing, D. Guyer, Detecting internal insect infestation in tart cherry using transmittance spectroscopy. Postharvest Biol Technol 49, 411–416 (2008)

    Article  Google Scholar 

  31. J. Xing, D. Guyer, Comparison of transmittance and reflectance to detect insect infestation in montmorency tart cherry. Comput Electron Agric 64, 194–201 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Professor Jeff Sakamoto, from the Department of Chemical Engineering & Material Science at Michigan State University for his valuable support and help in developing the agarose/surose phantoms. We also thank Mr. Mark Sellers, Mr. Rex Miller, and Ms. Meg Willis-Redfern for technical support using the CT scanner, and the Michigan State Veterinary Teaching Hospital for providing the CT scanner used for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin R. Donis-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donis-González, I.R., Guyer, D.E., Kavdir, I. et al. Development and applicability of an agarose-based tart cherry phantom for computer tomography imaging. Food Measure 9, 290–298 (2015). https://doi.org/10.1007/s11694-015-9234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9234-7

Keywords

Navigation