Skip to main content
Log in

Simultaneous quantitation of naturally occurring insecticides, acaricides, and piscicides in rapeseed oil by UV-MALDI mass spectrometry

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Quantitative UV-MALDI-Orbitrap mass spectrometric study of naturally occurring insecticides, acaricides and, piscicides rotenone (1), rotenolone (2), sumatrol (3), deguelin (4) as well as tephrosin (5) in rapeseed oil is presented. Direct emulsion assay and solid-state sample preparation techniques in presence of matrixes of organic crystals of ions are utilized. The protocol by APCI-MS and HPLC–ESI–MS/MS methods is verified. The method performance parameters along the matrix effects is evaluated by a comparison of analytical metrology achieved for rotenoids 15 by each of mass spectrometric methods. Advantages of UV-MALDI-Orbitrap-MS method for quantitation are emphasized. They are compared to those of core analytical hybrid methods such as GC–MS, and HPLC–ESI (or APCI)-MS/MS for lipidomics and determination of organic pollutants in oils. The statistical simple random sampling plan is utilized for analysis of non-polluted rapeseed oils sample sets. The determination of polluted sample set and validation by spiked rapeseed oils is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-SSA:

5-Sulfosalicylic acid

APCI:

Chemical ionization at atmospheric pressure (mass spectrometry)

CHCA:

α-Cyano-4-hydroxycinnamic acid

DHA:

2,4-Dihydroxybenzoic acid

DHB:

2,5-Dihydroxybenzoic acid

EASI:

Easy ambient sonic-spray ionization (mass spectrometry)

ESI:

Electrospray ionization (mass spectrometry)

GP:

Gas-phase

GC:

Gas-chromatography

HPSEC:

High performance size exclusion chromatography

IDL:

Instrumental detection limit

LODs:

Limits of detection (concentration)

LOQs:

Limits of quantitation (concentration)

M1:

3-(4-Amino-butylamino)-propyl-ammonium tris(hydrogensquarate) squaric acid

M2:

5-Amino-pentyl-ammonium bis(hydrogensquarate) monohydrate

M3:

5-Amino-pentyl-ammonium squarate

MALDI:

Matrix-assisted lasers desorption/ionization (mass spectrometry)

MDL:

Method detection limit

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry (operation mode)

NPs:

Natural products

TAGs:

Triacylglycerols

L:

Linoleic acid

Ln:

Linolenic acid

LMW:

Low molecular weight analytes

LOA:

1-Linoeolyl-2-oleoyl-arachidoylglycerol

LLL:

Trilinolein

LLO:

1,2-Dilinoleoyl-3-oleylglycerol

O:

Oleic acid

OAO:

1,3-Dioleoyl-2-arachidoyl glycerol

OOO:

Triolein

OOL:

Dioleoyl-linoleoyl glycerol

OOLn:

1,2-Dioleo-3-linolenic glycerol

OSO:

2-Steraroyl-diolein

P:

Palmitinic acid

Po:

Palmitoleic acid

POP:

1,3-Dipalmitoyl-2-oleoylglycerol

PLL:

Glycerin-1-palmitat-2,3-dilinolat

PLP:

1,3-Dipalmitoyl-2-lineoylglycerol

PSP:

1,3-Dipalmitoyl-2stearoylglycerol

RP-HPLC:

Reversed-phase high-performance liquid chromatography

RI:

Relative intensity

S:

Stearic acid

SOA:

1-Stearoyl-2-oleoyl-arachidoylglycerol

SOS:

2-Oleoyl distearin

SPS:

1,3-Distearoyl-2-palmitoylglycerol

SSS:

Tristearin

TOF:

Time-of-flight (mass spectrometric detection method)

XRD:

X-ray diffraction method (used only for powder analysis)

References

  1. 618/2012 Verordnung (EU) der Kommission vom 10.07.2012

  2. 1272/2008: Verordnung (EG) des Europaeischen Parlaments und des Rates vom 16.12.2008

  3. 2009/642/EC Directive and further amendments. Off. J. Eur. Union L350/14.12.1990

  4. F. Ayorinde, Q. Keith Jr, L. Wan, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of cod liver oil and the effect of analyte/matrix concentration on signal intensities. Rapid Commun. Mass Spectrom. 13, 1762–1769 (1999)

    Article  CAS  Google Scholar 

  5. M. Bahadir, H. Parlar, M. Spiteller (2000). Springer Umweltlexikon, 2nd edn. (Springer, Heidelberg/Berlin, 2000), pp. 1–1457

  6. R. Blessing, An empirical correction for absorption anisotropy. Acta Crystallogr. A51, 33–38 (1995)

    Article  CAS  Google Scholar 

  7. K. Berry, J. Hankin, R. Barkley, R. Spraggins, R. Caprioli, R. Murphy, MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 111, 6491–6512 (2011)

    Article  Google Scholar 

  8. C. Blatt, D. Chavez, H. Chai, J. Graham, F. Cabieses, N. Farnsworth, G. Cordell, J. Pezzuto, A. Kinghorn, Cytotoxic flavonoids from the stem bark of Lonchocarpus aff Fluvialis. Phytother. Res. 16, 320–325 (2002)

    Article  CAS  Google Scholar 

  9. P. Caboni, G. Sarias, A. Angioni, V. Garau, P. Cabras, Fast and versatile multiresidue method for the analysis of botanical insecticides on fruits and vegetables by HPLC/DAD/MS. J. Agric. Food Chem. 53, 8644–8649 (2005)

    Article  CAS  Google Scholar 

  10. D. Cornett, M. Reyzer, M. Chaurand, C. Caprioli, MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4, 826–828 (2007)

    Article  Google Scholar 

  11. R. Caprioli, J. Gore, Integrating spatially resolved three-dimensional MALDI-IMS with in vivo magnetic resonance imaging. Nat. Methods 5, 57–64 (2008)

    Google Scholar 

  12. R. Cole (ed.), Electrospray and MALDI mass spectrometry, 2nd edn. (Wiley, Hoboken, 2010), pp. 1–847

    Google Scholar 

  13. R. Cole (ed.), Electrospray ionization mass spectrometry (Wiley, New York, 1997), pp. 1–577

    Google Scholar 

  14. S. Choi, H. Chung, Novel co-matrix systems for the MALDI-MS analysis of polystyrene using a UV absorber and stabilizer. Analyst 138, 1256–1261 (2013)

    Article  CAS  Google Scholar 

  15. D. Chang, H. An, K. Kim, K. Kim, J. Jung, J. Lee, N. Kim, Y. Han, H. Yun, S. Lee, G. Lee, S. Lee, J. Lee, J. Cha, J. Park, J. Park, S. Lee, S. Kim, J. Kim, H. Lee, H. Kim, H. Suh, Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J. Med. Chem. 55, 10863–10884 (2012)

    Article  CAS  Google Scholar 

  16. C. Calvano, F. Palmisano, C. Zambonin, Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun. Mass Spectrom. 19, 1315–1320 (2005)

    Article  CAS  Google Scholar 

  17. B. Chapagain, Z. Wiesman, MALDI-TOF/MS fingerprinting of triacylglycerols (TAGs) in olive oils produced in the Israeli Negev Desert. J. Agric. Food Chem. 57, 1135–1142 (2009)

    Article  CAS  Google Scholar 

  18. D. Crawford, Ab initio calculation of molecular chiroptical properties. Theor. Chem. Acc. 115, 227–245 (2006)

    Article  CAS  Google Scholar 

  19. Dalton 2011 Program Package. http://www.daltonprogram.org/download.html

  20. F. De Proft, P. Geerlings, Conceptual and computational DFT in the study of aromaticity. Chem. Rev. 101, 1451–1464 (2001)

    Article  Google Scholar 

  21. L. Di Donna, G. Grassi, F. Mazzotti, E. Perri, G. Sindona, High-throughput assay of rotenone in olive oil using atmospheric pressure chemical ionization tandem mass spectrometry. J. Mass Spectrom. 239, 1437–1440 (2004)

    Article  Google Scholar 

  22. L. Di Donna, G. Grassi, F. Mazzotti, E. Perri, G. Sindona, High-throughput assay of rotenone in olive oil using atmospheric pressure chemical ionization tandem mass spectrometry. J. Mass Spectrom. 39, 1437–1440 (2004)

    Article  CAS  Google Scholar 

  23. K. Eyong, P. Puppala, P. Kumar, M. Lamshoeft, G. Folefoc, M. Spiteller, S. Baskaran, A mechanistic study on the Hooker oxidation: synthesis of novel indane carboxylic acid derivatives from lapachol. Org. Biomol. Chem. 11, 459–468 (2013)

    Article  CAS  Google Scholar 

  24. E. Esquenazi, Y. Yang, J. Watrous, W. Gerwickac, P. Dorrestein, Imaging mass spectrometry of natural products. Nat. Prod. Rep. 26, 1521–1529 (2009)

    Article  CAS  Google Scholar 

  25. E. Eyong, H. Foyet, C. Eyong, L. Sidjui, M. Yimdjo, S. Nwembe, M. Lamshoeft, G. Folefoc, M. Spiteller, V. Nastasa, Neurological activities of lapachol and its furano derivatives from Kigelia Africana. Med. Chem. Res. 22, 2902–2911 (2013)

    Article  CAS  Google Scholar 

  26. N. Fang, J. Casida, Cube resin insecticide: identification and biological activity of 29 rotenoid constituents. J. Agric. Food Chem. 47, 2130–2136 (1990)

    Article  Google Scholar 

  27. N. Fang, J. Casida, Anticancer action of cube insecticide: correlation for rotenoid constituents between inhibition of NADH:ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc. Natl. Acad. Sci. USA 95, 3380–3384 (1998)

    Article  CAS  Google Scholar 

  28. E. Fedeli, Lipids of olives. Prog. Chem. Fats Other Lipids 15, 57–74 (1977)

    Article  CAS  Google Scholar 

  29. M. Frisch et al. Gaussian 09, Gaussian, Inc., Pittsburgh, PA (2009)

  30. B. Fuchs, J. Schiller, Application of MALDI-TOF mass spectrometry in lipidomics. Eur. J. Lipid Sci. Technol. 111, 83–98 (2009)

    Article  CAS  Google Scholar 

  31. S. Gao, Y. Xu, F. Valeriote, A. Gunatilaka, Pierreiones A–D, solid tumor selective pyranoisoflavones and other cytotoxic constituents from Antheroporum pierrei. J. Nat. Prod. 74, 852–856 (2011)

    Article  CAS  Google Scholar 

  32. J. Gross, Mass spectrometry, a textbook, 2nd edn. (Springer, Heidelberg, 2000), pp. 1–753

    Google Scholar 

  33. L. Guo, M. Xie, A. Yan, Y. Wan, Y. Wu, Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC–MS. Anal. Bioanal. Chem. 386, 1881–1887 (2006)

    Article  CAS  Google Scholar 

  34. F. Guyon, C. Absalon, A. Eloy, M. Salagoity, M. Esclapez, M. Medina, Comparative study of matrix-assisted laser desorption/ionization and gas chromatography for quantitative determination of cocoa butter and cocoa butter equivalent triacylglycerol composition. Rapid Commun. Mass Spectrom. 17, 2317–2322 (2003)

    Article  CAS  Google Scholar 

  35. B. Ivanova, M. Spiteller, Substituted benzo[i]phenanthridines as promising topoisomerase-I non-camptothecin targeting agents: an experimental and theoretical study. Med Chem Res (2013). doi:10.1007/s00044-013-0515-6

    Google Scholar 

  36. B. Ivanova, M. Spiteller, Physical optical properties and crystal structures of organic 5-sulfosalicylates theoretical and experimental study. J. Mol. Struct. 1003, 1–9 (2011)

    Article  CAS  Google Scholar 

  37. B. Ivanova, M. Spiteller, On the chemical identification and determination of flavonoids in solid-state. Talanta 94, 9–21 (2012)

    Article  CAS  Google Scholar 

  38. B. Ivanova, M. Spiteller, Matrixes in UV-MALDI mass spectrometry—crystals of organic salts versus co-crystals of neutral polyfunctional carboxylic acids. Anal. Methods 4, 2247–2253 (2012)

    Article  CAS  Google Scholar 

  39. B. Ivanova, M. Spiteller, A quantitative solid-state Raman spectroscopic method for control of fungicides. Analyst 137, 3355–3364 (2012)

    Article  CAS  Google Scholar 

  40. A. Jakab, K. Nagy, K. Heberger, K. Vekey, E. Forgacs, Differentiation of vegetable oils by mass spectrometry combined with statistical analysis. Rapid Commun. Mass Spectrom. 16, 2291–2297 (2003)

    Article  Google Scholar 

  41. H. Ji, J. Voinov, M. Deinzer, D. Barofsky, Distinguishing between Cis/Trans isomers of monounsaturated fatty acids by FAB MS. Anal. Chem. 79, 1519–1522 (2007)

    Article  CAS  Google Scholar 

  42. S. Kusari, S. Zuehlke, M. Spiteller, Chemometric evaluation of the anti-cancer pro-drug podophyllotoxin and potential therapeutic analogues in Juniperus and Podophyllum species. Phytochem. Anal. 22, 128–143 (2011)

    Article  CAS  Google Scholar 

  43. S. Kusari, J. Kosuth, E. Cellarova, M. Spiteller, Survival-strategies of endophytic Fusarium solani against indigenous camptothecin biosynthesis. Fungal Ecol. 4, 219–223 (2010)

    Article  Google Scholar 

  44. M. Kongue, F. Talontsi, M. Lamshoeft, T. Kenla, B. Dittrich, G. Kapche, M. Spiteller, Sonhafouonic acid, a new cytotoxic and antifungal hopene-triterpenoid from Zheneria scabra camerunensis. Fitoterapia 85, 176–180 (2013)

    Article  CAS  Google Scholar 

  45. C. Kelley, Iterative methods for optimization. SIAM Appl. Math. 18, 43–55 (1999)

    Google Scholar 

  46. A. Kiritsakis, A. Kanavouras, A. Kiritsakis, Chemical analysis, quality control and packaging issues of olive oil. Eur. J. Lipid Sci. Technol. 104, 628–638 (2002)

    Article  CAS  Google Scholar 

  47. I. Lavagnini, F. Magno, R. Seraglia, P. Traldi, Quantitative Applications of Mass Spectrometry (Wiley, West Sussex, 2006), pp. 1–132

    Book  Google Scholar 

  48. W. Liao, W. Draper, S. Perera, Identification of unknowns in atmospheric pressure ionization mass spectrometry using a mass to structure search engine. Anal. Chem. 80, 7765–7777 (2008)

    Article  CAS  Google Scholar 

  49. B. Mader, V. Pivtoraiko, H. Flippo, B. Klocke, K. Roth, L. Mangieri, L. Shacka, Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem. Neurosci. 3, 1063–1072 (2012)

    Article  CAS  Google Scholar 

  50. H. Ma, P. Forssell, R. Partanen, R. Seppanen, J. Buchert, H. Boer, Sodium caseinates with an altered isoelectric point as emulsifiers in oil/water systems. J. Agric. Food Chem. 57, 3800–3807 (2009)

    Article  CAS  Google Scholar 

  51. B. Mennucci, J. Tomasi, R. Cammi, J. Cheeseman, M. Frisch, F. Devlin, S. Gabriel, P. Stephens, Polarizable continuum model (pcm) calculations of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A 106, 6102–6113 (2002)

    Article  CAS  Google Scholar 

  52. K. Madsen, H. Nielsen, O. Tingleff, Informatics and Mathematical Modelling, 2nd edn. (DTU Press, Denmark, 2004)

    Google Scholar 

  53. E. Nkanwen, M. Awouafack, J. Bankeu, H. Wabo, S. Mustafa, M. Ali, M. Lamshoeft, M. Choudhary, M. Spiteller, P. Tane, Constituents from the stem bark of Cinnamomum zeylanicum Welw. (Lauraceae) and their inhibitory activity toward Plasmodium falciparum enoyl-ACP reductase enzyme. Rec. Nat. Prod. 7, 296–301 (2013)

    CAS  Google Scholar 

  54. J. Norris, R. Caprioli, Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. (2013). doi:10.1021/cr3004295

    Google Scholar 

  55. W. Newsome, J. Shields, Residues of rotenone and rotenolone on lettuce and tomato fruit after treatment in the field with rotenone formulations. J. Agric. Food Chem. 28, 722–724 (1900)

    Article  Google Scholar 

  56. T. Oesterreich, U. Klaus, M. Volk, B. Neidhart, M. Spiteller, Environmental fate of amitrole: Influence of dissolved organic matter. Chemosphere 38, 379–392 (1999)

    Article  CAS  Google Scholar 

  57. OpenOffice Program package. http://de.openoffice.org/

  58. F. Pan-Montojo, M. Schwarz, C. Winkler, M. Arnhold, G. O’Sullivan, A. Pal, J. Said, G. Marsico, J. Verbavatz, M. Rodrigo-Angulo, G. Gille, R. Funk, H. Reichmann, Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep. 2(898), 1–12 (2012)

    Google Scholar 

  59. T. Pfeifer, U. Klaus, R. Hoffmann, M. Spiteller, Characterisation of humic substances using atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry combined with size-exclusion chromatography. J. Chromatogr. A 926, 151–159 (2001)

    Article  CAS  Google Scholar 

  60. G. Picariello, R. Sacchi, F. Addeo, One-step characterization of triacylglycerols from animal fat by MALDI-TOF MS. Eur. J. Lipid Sci. Technol. 109, 511–524 (2007)

    Article  CAS  Google Scholar 

  61. S. Puri, V. Verma, T. Amina, G. Qazi, M. Spiteller, An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 68, 1717–1719 (2005)

    Article  CAS  Google Scholar 

  62. G. Picariello, A. Paduano, R. Sacchi, F. Addeo, MALDI-TOF mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. J. Agric. Food Chem. 57, 5391–5400 (2009)

    Article  CAS  Google Scholar 

  63. A. Porcari, N. Schwab, R. Alberici, E. Cabral, D. de Moraes, P. Montanher, C. Ferreira, M. Eberlin, J. Visentainer, Intact triacylglycerol profiles of fats and meats via thermal imprinting easy ambient sonic-spray ionization mass spectrometry. Anal. Methods 4, 3551–3557 (2012)

    Article  CAS  Google Scholar 

  64. R. Pawlowicz, J. Gromadzka, M. Tynek, R. Tylingo, W. Wardencki, G. Karlovits, The influence of the UV irradiation on degradation of virgin rapeseed oils. Eur. J. Lipid Sci. Technol. 115, 648–658 (2013)

    Article  CAS  Google Scholar 

  65. D. Perez-Bendito, S. Rubio (1999) Environmental analytical chemistry, ed. by Weber. Wilson and Wilson’s Comprehensive Analytical Chemistry, vol XXXII (Elsevier, Amsterdam, 1999), pp. 1–842

  66. T. Rezenka, H. Rezankova, Characterization of fatty acids and triacylglycerols in vegetables by gas chromatography and statistical analysis. Anal. Chim. Acta 398, 253–261 (1999)

    Article  Google Scholar 

  67. R. Rathore, J. Corr, G. Scott, P. Vollmerhaus, K. Greis, Development of an inhibitor screening platform via mass spectrometry. J. Biomol. Screen. 13, 1007–1013 (2008)

    Article  CAS  Google Scholar 

  68. R. Reed, J. Wilson, Electron impact and molecular dissociation. Part XII.1. The cracking patterns of some rotenoids and flavones. J. Chem. Soc. 1963, 5949–5956 (1963)

    Article  Google Scholar 

  69. M. Schluesener, M. Spiteller, K. Bester, Determination of antibiotics from soil by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1003, 21–28 (2003)

    Article  Google Scholar 

  70. G.M. Sheldrick, A short history of SHELX. Acta Crystallogr. A64, 112–122 (2008)

    Article  Google Scholar 

  71. G.M. Sheldrick, Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crysallogr. D66, 479–485 (2010)

    Google Scholar 

  72. G.M. Sheldrick, Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A46, 467–473 (1990)

    Article  CAS  Google Scholar 

  73. A. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003)

    Article  CAS  Google Scholar 

  74. M. Spiteller, Isolation and characterisation of dissolved organic carbon from natural and lysimeter waters by ultrafiltration. Sci. Tot. Environ. 62, 47–54 (1987)

    Article  CAS  Google Scholar 

  75. T. Sinha, S. Khatib-Shahidi, T. Yankeelov, K. Mapara, M. Ehtesham, D. Cornett, D. Dawant, S. Shanta, T. Kim, J. Hong, L. Lee, C. Shin, K. Kim, Y. Kim, S. Kime, K. Kim, A new combination MALDI matrix for small molecule analysis: application to imaging mass spectrometry for drugs and metabolites. Analyst 137, 5757–5762 (2012)

    Article  Google Scholar 

  76. Spiteller M (1979) Identifizierung, Strukturaufklärung und Synthese bisher unbekannter Inhaltsstoffe des Harns, insbesondere der Urofuransäuren, einer neuen Naturstoffklasse, Dissertation (PhD grade), pp. 1–156, Universitaet Goettingen, Niedersachsen, Germany

  77. S. Saraiva, E. Cabral, M. Eberlin, R. Catharino, Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. J. Agric. Food Chem. 57, 4030–4034 (2009)

    Article  CAS  Google Scholar 

  78. M. Thomas, S. Dunn, J. Altvater, S. Dove, G. Nette, Rapid identification of long-chain polyunsaturated fatty acids in a marine extract by HPLC–MS using data-dependent acquisition. Anal. Chem. 84, 5976–5983 (2012)

    Article  CAS  Google Scholar 

  79. J. van Kampen, P. Burgers, R. Gruters, A. Osterhaus, R. de Groot, T. Luider, D. Volmer, Quantitative analysis of antiretroviral drugs in lysates of peripheral blood mononuclear cells using MALDI-triple quadrupole mass spectrometry. Anal. Chem. 80, 4969–4975 (2008)

    Article  Google Scholar 

  80. J. van Kampen, P. Burgers, R. de Groot, R. Gruters, T. Luider, Biomedical application of MALDI mass spectrometry for small molecular analysis. Mass Spectrom. Rev. 30, 101–120 (2011)

    Article  Google Scholar 

  81. X. Zang, E. Fukuda, J. Rosen, Multiresidue analytical procedure for insecticides used by organic farmers. J. Agric. Food Chem. 46, 2206–2210 (1998)

    Article  CAS  Google Scholar 

  82. Y. Zhang, L. Li, P. Yang, H. Lu, On-plate enrichment methods for MALDI-MS analysis in proteomics. Anal. Methods 4, 2622–2631 (2012)

    Article  CAS  Google Scholar 

  83. Y. Zhao, D. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)

    Article  CAS  Google Scholar 

  84. Y. Zhao, D. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutscher Akademischer Austausch Dienst, the Deutsche Forschungsgemeinschaft, the central intrumental laboratories for structural analysis at Dortmund University (Nordrhein-Westfalen, Germany) and the analytical and computational laboratory clusters at the Institute of Environmental Research (INFU) at the same University.

Conflict of interest

Michael Spiteller has received research grants (Deutsche Forschungsgemeinschaft, 255/21-1 and 255/22-1; NRW-EU-Ziel2-Programms: Regionale Wettbewerbsfähigkeit und Beschäftigung: Mykotoxine in Lebens- und Futtermitteln—ein ungelöstes Problem in der Qualitätssicherung); Bojidarka Ivanova has received research grant (Deutsche Forschungsgemeinschaft, 255/22-1)

Ethical standard

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojidarka Ivanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, B., Spiteller, M. Simultaneous quantitation of naturally occurring insecticides, acaricides, and piscicides in rapeseed oil by UV-MALDI mass spectrometry. Food Measure 8, 15–28 (2014). https://doi.org/10.1007/s11694-013-9161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-013-9161-4

Keywords

Navigation