Skip to main content
Log in

Independent components analysis applied to mid-infrared spectra of edible oils to study the thermal stability of heated oils

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, independent components analysis (ICA) is tested as a mathematical method to extract characteristic signals from a data set of mid-infrared spectra acquired during accelerated oxidation of vegetable oils (corn oil, sunflower oil and soya oil) at different temperatures. These characteristic signals highlight the modifications that occur in the oils and facilitate their interpretation. ICA clearly showed that although the nature of the chemical reactions (such as oxidation and cistrans isomerisation) induced by the heating are the same for all the types of analysed samples (corn oil, sunflower oil and soya oil), their kinetics are different depending on the oil composition. ICA also showed that higher temperatures reduce the induction times of the oxidation reaction and accelerate the degradation of the oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Guoping, D. Quingzhu, H. Zhenyu, TrAC, Trends Anal. Chem. 27(4), 368 (2008)

    Article  Google Scholar 

  2. D. Jouan-Rimbaud Bouveresse, H. Benabid, D.N. Rutledge, Anal. Chim. Acta 589(2), 216 (2007)

    Article  Google Scholar 

  3. J.V. Stone, Independent Component Analysis: A Tutorial Introduction (MIT Press, Cambridge, 2004)

    Google Scholar 

  4. A. Hyvärinen, Phil. Trans. R. Soc. A 371, 20110534 (2013)

    Article  Google Scholar 

  5. F. Ammari, D. Jouan-Rimbaud Bouveresse, N. Boughanmi, D.N. Rutledge, Talanta 99, 323 (2012)

    Article  CAS  Google Scholar 

  6. F. Ammari, C.B.Y. Cordella, N. Boughanmi, D.N. Rutledge, Chemom. Intell. Lab. Syst. 113, 32 (2012)

    Article  CAS  Google Scholar 

  7. N.P. Artman, Adv. Lipid Res. 7, 245 (1969)

    CAS  Google Scholar 

  8. C.W. Fritch, J. Am. Oil Chem. Soc. 58, 272 (1981)

    Article  Google Scholar 

  9. G. Billek, Nutr. Metab. 24, 200 (1980)

    Article  CAS  Google Scholar 

  10. S.S. Chang, R.J. Peterson, C.T. Ho, J. Am. Oil Chem. Soc. 55, 718 (1978)

    Article  CAS  Google Scholar 

  11. M. Laguerre, J. Lecomte, P. Villeneuve, Prog. Lipid Res. 46(5), 244 (2007)

    Article  CAS  Google Scholar 

  12. F. Guimet, R. Boque, J. Ferre, J. Agric. Food Chem. 544, 143 (2005)

    CAS  Google Scholar 

  13. C.M. Andersen, R. Bro, J. Chemom. 17, 200 (2003)

    Article  CAS  Google Scholar 

  14. D.N. Rutledge, D. Jouan-Rimbaud Bouveresse, Trends. Anal. Chem. (2013) (accepted)

  15. V. Krishnaveni, S. Jayaraman, P.M. Manoj Kumar, K. Shivakumar, K. Ramadoss, Meas. Sci. Rev. 5(2), 67 (2005)

    Google Scholar 

  16. D. Jouan-Rimbaud-Bouveresse, A. Moya-González, F. Ammari, D.N. Rutledge, J. Chemom. Intell. Lab. Syst. 11, 224 (2012)

    Google Scholar 

  17. R. Climaco Pinto, N. Locquet, L. Eveleigh, D.N. Rutledge, Food Chem. 120, 1170 (2010)

    Article  Google Scholar 

  18. K.M. Schaich, Bailey’s Industrial Oil and Fat (Wiley, New York, 2005)

    Google Scholar 

  19. M. Guillén, N. Cabo, Food Chem. 77, 503 (2002)

    Article  Google Scholar 

  20. N. Vlachos, Y. Skopelitis, M. Psaroudaki, V. Konstantinidou, A. Chatzilazarou, E. Tegou, Anal. Chim. Acta. 573–574, 459 (2006)

    Article  Google Scholar 

  21. M.C.M. Moya Moreno, D. Mendoza Olivares, F.J. Amezquita Lopez, J.V. Gimeno Adelanto, F. Bosch Reig, Talanta 50, 269 (1999)

    Article  CAS  Google Scholar 

  22. M.D. Guillén, N. Cabo, J. Sci. Food Agric. 78, 1 (1997)

    Article  Google Scholar 

  23. M.M. Magdi, E. Richard, J.T. Ecdonald, J.A. David, W. Samuel, J. Agric. Food Chem. 38, 86 (1990)

    Article  Google Scholar 

  24. B. Innawong, P. Mallikarjunan, J. Irudayaraj, J.E. Marcy, Lebensm. Wiss. Technol. 37, 23 (2004)

    Article  CAS  Google Scholar 

  25. M.D. Guillén, N. Cabo, J. Agric. Food Chem. 47, 709 (1999)

    Article  Google Scholar 

  26. M. Safar (1995) PhD thesis 49

  27. F.R. Van de Voort, A.A. Ismail, J. Sedman, G. Emo, J. Am. Oil Chem. Soc. 71, 243 (1994)

    Article  Google Scholar 

  28. M.D. Guillén, E. Goicoechea, J. Agric. Food Chem. 55, 10729 (2007)

    Article  Google Scholar 

  29. H. Yang, J. Irudayaraj, M.M. Paradkar, Food Chem. 93(1), 25 (2005)

    Article  CAS  Google Scholar 

  30. A.A. Christy, P.K. Egeberg, E.T. Ostensen, Vib. Spectrosc. 33, 37 (2003)

    Article  CAS  Google Scholar 

  31. P.S. Belton, R.H. Wilson, H. Sadeghi, J. Orabchi, K.E. Peers, Lebensm. Wiss. Technol. 21, 153 (1988)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Ammari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammari, F., Bouveresse, D.JR., Eveleigh, L. et al. Independent components analysis applied to mid-infrared spectra of edible oils to study the thermal stability of heated oils. Food Measure 7, 90–99 (2013). https://doi.org/10.1007/s11694-013-9143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-013-9143-6

Keywords

Navigation