Skip to main content
Log in

Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

Wheat classes at different moisture levels need to be identified to accurately segregate, properly dry, and safely store before processing. This paper introduces a new method using a near infrared (NIR) hyperspectral imaging system (960–1,700 nm) to identify five western Canadian wheat classes (Canada Western Red Spring (CWRS), Canada Western Extra Strong (CWES), Canada Western Red Winter (CWRW), Canada Western Soft White Spring (CWSWS), and Canada Western Hard White Spring (CWHWS)) and moisture levels, independent of each other. The objectives of this research also included identification of each wheat class at specific moisture levels of 12, 14, 16, 18, and 20%. Bulk samples of wheat were scanned in the 960–1,700 nm wavelength region at 10 nm intervals using an Indium Gallium Arsenide (InGaAs) NIR camera. Spectral feature data sets were developed by calculating relative reflectance intensities of the scanned images. Principal components analysis was used to generate scores images and loadings plots. The NIR wavelengths in the region of 1,260–1,360 nm were important based on the loadings plot of first principal component. In statistical classification, the linear and quadratic discriminant analyses were used to classify wheat classes giving accuracies of 61–97 and 82–99%, respectively, independent of moisture contents. It was also found that the linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) could classify moisture contents with classification accuracies of 89–91 and 91–99%, respectively, independent of wheat classes. Once wheat classes were identified, classification accuracies of 90–100 and 72–99% were observed using LDA and QDA, respectively, when identifying specific moisture levels. Spectral features at key wavelengths of 1,060, 1,090, 1,340, and 1,450 nm were ranked at top in classifying wheat classes with different moisture contents. This work shows that hyperspectral imaging techniques can be used for rapidly identifying the wheat classes even at varying moisture levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAOSTAT Food and Agriculture Organizations of the United Nations (2009), http://faostat.fao.org. Accessed 15 August 2009

  2. J. Paliwal, N.S. Sashidhar, D.S. Jayas, Trans. ASAE 42, 1921 (1999)

    Google Scholar 

  3. S. McNeill, D. Overhults, A Comprehensive Guide to Wheat Management in Kentucky (2009), http://www.ca.uky.edu/agc/pubs/id/id125/10.htm. Accessed 14 August 2009

  4. P.R. Armstrong, E.B. Maghirang, F. Xie, F.E. Dowell, Appl. Eng. Agric. 22, 453 (2006)

    Google Scholar 

  5. S.R. Delwiche, K.H. Norris, Cereal Chem. 70(1), 29 (1993)

    CAS  Google Scholar 

  6. H. Song, S.R. Delwiche, Y. Chen, Opt. Eng. 34, 2927 (1995)

    Article  Google Scholar 

  7. D. Wang, F.E. Dowell, R.E. Lacey, Cereal Chem. 76(1), 30 (1999)

    Article  CAS  Google Scholar 

  8. I.Y. Zayas, C.R. Martin, J.L. Steele, A. Katsevich, Trans. ASAE 39, 6–2199 (1996)

    Google Scholar 

  9. A. Manickavasagan, G. Sathya, D.S. Jayas, N.D.G. White, J. Cereal Sci. 47, 518 (2008)

    Article  Google Scholar 

  10. A. Manickavasagan, D.S. Jayas, N.D.G. White, J. Paliwal, Food Bioprocess Technol. 3, 450 (2010)

    Article  Google Scholar 

  11. G. Bellucci, V. Formisano, J. Opt. Soc. Am. 12(9), 1884 (1997)

    Google Scholar 

  12. C.D. Clark, H.T. Ripley, E.P. Green, A.J. Edwards, P.J. Mumby, Int. J. Remote Sens. 18, 2–237 (1997)

    Article  CAS  Google Scholar 

  13. R.G. Resmini, M.E. Kappus, W.S. Aldrich, J.C. Harsanyi, M. Anderson, Int. J. Remote Sens. 18, 7–1553 (1997)

    Article  Google Scholar 

  14. M.S. Moran, Y. Inoue, E.M. Barnes, Remote Sens. Environ. 61, 3–319 (1997)

    Google Scholar 

  15. P. Tatzer, M. Wolf, T. Panner, Real-Time Imaging 11, 99 (2005)

    Article  Google Scholar 

  16. D.P. Ariana, R. Lu, D.E. Guyer, Comput. Electron. Agric. 53, 60 (2006)

    Article  Google Scholar 

  17. J. Xing, C. Bravo, P.T. Jancsok, H. Ramon, J.D. Baerdemaeker, Biosyst. Eng. 90, 1–27 (2005)

    Article  Google Scholar 

  18. A. Peirs, N. Scheerlinck, N.D. Baerdemaeker, B.M. Nicolai, J. Near Infrared Spectrosc. 11, 379 (2003)

    Article  CAS  Google Scholar 

  19. B. Park, K.C. Lawrence, W.R. Windham, R.J. Buhr, Trans. ASAE 45(6), 2017 (2002)

    Google Scholar 

  20. G. Polder, G.W.A.M. van der Heijden, I.T. Young, Trans. ASAE 45(4), 1155 (2002)

    Google Scholar 

  21. M. Nagata, T.G. Tallada, T. Kobayashi, H. Toyada, Paper no. 053131 (ASABE, St. Joseph, 2005)

  22. B.M. Nicolai, E. Lotze, A. Peirs, N. Scheerlinck, K.I. Theron, Postharvest Biol. Technol. 40, 1 (2006)

    Article  Google Scholar 

  23. R.P. Cogdill, C.R. Hurburgh Jr., G.R. Rippke, Trans. ASAE 47(1), 311 (2004)

    Google Scholar 

  24. S. Mahesh, A. Manickavasagan, D.S. Jayas, J. Paliwal, N.D.G. White, Biosyst. Eng. 101, 50 (2008)

    Article  Google Scholar 

  25. C.B. Singh, D.S. Jayas, J. Paliwal, N.D.G. White, Trans. ASABE 50(6), 2171 (2007)

    Google Scholar 

  26. R. Choudhary, S. Mahesh, J. Paliwal, D.S. Jayas, Biosyst. Eng. 102, 2–115 (2009)

    Article  Google Scholar 

  27. H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, 1992)

    Google Scholar 

  28. P. Geladi, H. Grahn, Multivariate Image Analysis (Wiley, Chichester, 1996)

    Google Scholar 

  29. S. Mahesh, M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba, Canada, 2007

  30. D. Wang, F.E. Dowell, R.E. Lacey, Trans. ASAE 42, 233 (1999)

    Google Scholar 

  31. S.R. Delwiche, D.R. Massie, Cereal Chem. 73, 399 (1996)

    CAS  Google Scholar 

  32. I. Murray, P.C. Williams, in Near-Infrared Technology in the Agricultural and Food Industries, ed. by P.C. Williams, K.H. Norris (American Association of Cereal Chemists Inc., St. Paul, 1987), p. 17

    Google Scholar 

  33. SAS/STAT User’s Guide (2009), http://v8doc.sas.com/sashtml/stat/chap60/index.htm. Accessed 15 August 2009

  34. D. Wang, F.E. Dowell, M.S. Ram, W.T. Schapaugh, Int. J. Food Prop. 7, 75 (2003)

    Article  Google Scholar 

  35. S.R. Delwiche, R.A. Graybosch, J. Cereal Sci. 35, 29 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Research Chairs program, the Canada Foundation for Innovation (CFI), and the University of Manitoba Graduate Fellowship (UMGF) for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Jayas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh, S., Jayas, D.S., Paliwal, J. et al. Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples. Sens. & Instrumen. Food Qual. 5, 1–9 (2011). https://doi.org/10.1007/s11694-010-9104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-010-9104-2

Keywords

Navigation