Skip to main content
Log in

Using a Short Wavelength Infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels

  • ORIGINAL PAPER
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

Sprout damage (pre-harvest germination) in wheat results in highly deleterious effects on end-product quality. Alpha-amylase, the pre-dominant enzyme in the early stage of sprouting has the most damaging effect. This paper introduces a new method using a SWIR hyperspectral imaging system (1000–2500 nm) to predict the α-amylase activity of individual wheat kernels. Two classes of Canadian wheat, Canada Western Red Spring (CWRS) and Canada Western Amber Durum (CWAD), with samples of differing degrees of sprout damage were investigated. Individual kernels were first imaged with the hyperspectral imaging system and then the α-amylase activity of each kernel was determined analytically. Individual kernel α-amylase activity prediction was significant (R 2 0.54 and 0.73) for CWAD and CWRS, respectively using Partial Least Square regression on the hyperspectral data. A classification method is proposed to separate CWRS kernels with high α-amylase activity level from those with low α-amylase activity giving an accuracy of above 80%. This work shows that hyper/multi-spectral imaging techniques can be used for rapidly predicting the α-amylase activity of individual kernels, detecting sprouting at early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. CGC Anonymous Grades of Grain, http://www.grainscanada.gc.ca/legislation-legislation/regulation-reglement/2008/sch-ann-3-2008-eng.pdf

  2. CGC, http://www.grainscanada.gc.ca/fact-fait/sd-gg-eng.htm, 2008

  3. Anonymous, http://www.awb.com.au/NR/rdonlyres/B835A072-EDB9-4C7A-AD84-323DEDEF66DD/0/Sprouted_Grain_factsheet.pdf. Accessed 23 Oct 2008

  4. J.H. Kim, E.J. Tanhehco, P.K.W. Ng, Food Chem. 99, 718 (2006)

    Article  CAS  Google Scholar 

  5. T.B. Biddulph, J.A. Plummer, T.L. Setter, D.J. Mares, Field Crops Res. 107, 116 (2008)

    Article  Google Scholar 

  6. J.M. Martin, B. Beecher, M.J. Giroux, J. Cereal Sci. 48, 800 (2008)

    Article  CAS  Google Scholar 

  7. K. Mrva, M. Wallwork, D.J. Mares, J. Exp. Bot. 57, 877 (2006)

    Article  CAS  Google Scholar 

  8. G.D. Lunn, B.J. Major, P.S. Kettlewell, R.K. Scott, J. Cereal Sci. 33, 313 (2001)

    Article  CAS  Google Scholar 

  9. R. Lin, R. Horsley, P. Schwarz, J. Cereal Sci. 48, 446 (2008)

    Article  CAS  Google Scholar 

  10. AACC, Methods 39-10,39-11,46-30 and 08-01. American Association of Cereal Chemists (2002)

  11. P.R. Armstrong, E.B. Maghirang, F. Xie, F.E. Dowell, Appl. Eng. Agric. 22, 453 (2006)

    Google Scholar 

  12. T. Bramble, F.E. Dowell, T.J. Herrman, Appl. Eng Agric. 22, 945 (2006)

    Google Scholar 

  13. R. Lu, Trans. ASAE 46, 523 (2003)

    Google Scholar 

  14. C. Yang, J.H. Everitt, J.M. Bradford, Trans. ASAE 47, 915 (2004)

    Google Scholar 

  15. A.A. Gowen, C.P. O’Donnell, P.J. Cullen, G. Downey, J.M. Frias, Trends Food Sci. Technol. 18, 590 (2007)

    Article  CAS  Google Scholar 

  16. J. Xing, W. Saeys, J. De Baerdemaeker, Comput. Electron. Agric. 56, 1 (2007)

    Article  Google Scholar 

  17. H. Koc, V.W. Smail, D.L. Wetzel, J. Cereal Sci. 48, 394 (2008)

    Article  Google Scholar 

  18. I.G. Chong, C.H. Jun, Chemom. Intel. Lab. Syst. 78, 103 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Loni Powell and Lisa Van Schepdael of the Grain Research Laboratory, Canadian Grains Commission for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Symons.

Additional information

GRL Publication number 1014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, J., Van Hung, P., Symons, S. et al. Using a Short Wavelength Infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels. Sens. & Instrumen. Food Qual. 3, 211–218 (2009). https://doi.org/10.1007/s11694-009-9087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-009-9087-z

Keywords

Navigation