Skip to main content
Log in

Analytical performance and characterization of antibody immobilized magnetoelastic biosensors

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

This article presents the results of an investigation into the enhancement of sensitivity and thermal stability of polyclonal antibody immobilized magnetoelastic biosensors. The Langmuir–Blodgett (LB) monolayer technique was employed for antibody (specific to Salmonella sp.) immobilization on rectangular shaped strip magnetoelastic sensors. Biosensor performance was investigated by exposing to graded concentrations (5 × 101–5 × 108 cfu mL−1) of Salmonella typhimurium solutions in a flow through mode. Bacterial binding to the antibody on the sensor surfaces changed the resonance parameters, and these changes were quantified by the sensor’s resonance frequency shift. An increase in the sensitivity from 159 Hz decade−1 for a 2 mm sensor to 246 Hz decade−1 for a 1 mm sensor was observed during the dose–response measurements. The stability of the biosensor was also investigated by storing the biosensor at 25, 45 and 65 °C. The binding activity of the stored biosensor was estimated by measuring the changes in resonance frequency after exposure to the bacterial solutions (109 cfu mL−1). Binding activity was also confirmed by counting bound S. typhimurium cells on the sensor surface using Scanning Electron Microscopy (SEM) micrographs. The results show that at each temperature, the binding activity of the biosensor gradually decreased over the testing period. Degradation of biosensor accelerated at higher storage temperatures. The activation energy of biosensor system degradation was determined to be 7.7 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Zeng, C. Ruan, O.K. Varghese, C.A. Grimes, Anal. Chem. 75, 6494 (2003)

    Article  Google Scholar 

  2. R. Guntupalli, J. Hu, R.S. Lakshmanan, T.S. Huang, J.M. Barbaree, B.A. Chin, Biosens. Bioelectron. 22, 1474 (2007)

    Article  CAS  Google Scholar 

  3. J. Wan, H. Shu, S. Huang, B. Fiebor, I.-H. Chen, V.A. Petrenko, B.A. Chin, IEEE Sens. 7, 470 (2007)

    Article  Google Scholar 

  4. N. Bouropoulos, D. Kouzoudis, C.A. Grimes, Sens. Actuators B 109, 227 (2005)

    Article  Google Scholar 

  5. K. Shankar, K. Zeng, C. Ruan, C.A. Grimes, Sens. Actuators B 107, 640 (2005)

    Article  Google Scholar 

  6. S. Wu, Y. Zhu, Q. Cai, K. Zeng, C.A. Grimes, Sens Actuators B 121(2), 476 (2007)

    Article  Google Scholar 

  7. K.G. Ong, J.M. Leland, K. Zeng, G. Barrett, M. Zourob, C.A. Grimes, Biosens. Bioelectron. 21, 2270–2274 (2006)

    Article  CAS  Google Scholar 

  8. L.G. Frenken, R.H. Van der Linden, B. de Geus, M.M. Harmsen, R.C. Ruuls, W. Stok, L. de Ron, S. Wilson, P. Davis, C.T. Verrips, Biochim. Biophys. Acta 1431, 37 (1999)

    Google Scholar 

  9. A. Ohtsu, A. Usami, S. Takahama, T. Fujii, J. Pharm. Biomed. Anal. 14, 1133 (1996)

    Article  Google Scholar 

  10. C. Steinhauer, C. Wingren, A.C. Hager, C.A. Borrebaeck, Biotechniques 33, 38 (2002)

    Google Scholar 

  11. U. Brinkmann, Y. Reiter, K.O. Webber, S.H. Jung, B. Lee, I. Pastan, Protein Eng. 7, 697 (1994)

    Article  Google Scholar 

  12. M. Fielder, K. Kramer, A. Skerra, B. Hock, Biosens. Bioelectron. 17, 305 (2002)

    Article  Google Scholar 

  13. S.D. Grant, H. Dooley, W.J. Harris, A.J. Porter, Biotechnol. Appl. Biochem. 28, 77 (1998)

    Google Scholar 

  14. http://metglas.com/products/page5_1_2_7.htm, in, September, 2006

  15. S.T. Pathirana, J. Barbaree, B.A. Chin, M.G. Hartell, W.C. Neely, V. Vodyanoy, Biosens. Bioelectron. 15, 135 (2000)

    Article  CAS  Google Scholar 

  16. P.G. Stoyanov, C.A. Grimes, Sens. Actuators A 80, 8 (2000)

    Article  CAS  Google Scholar 

  17. Q.Y. Cai, A. Cammers-Goodwin, C.A. Grimes, J. Environ. Monit. 2, 556 (2000)

    Google Scholar 

  18. I.H. Segal, Biochemical Calculations (Wiley, New York, 1976)

    Google Scholar 

  19. J.D. Chiu, C.M. Chung, L.H. Connors, O. Gursky, A. Lim, A.B. Dykstra, J. Liepnieks, M.D. Benson, C.E. Costello, M. Skinner, M.T. Walsh, Biophys. J. 88, 4232 (2005)

    Article  Google Scholar 

  20. S.E. Rowe, C. Tanford, Biochemistry 12, 4822 (1973)

    Article  CAS  Google Scholar 

  21. D.E. Serban, F. Peteu, R. Mark Worden, Biosens. Bioelectron. 11, 1059 (1996)

    Article  Google Scholar 

  22. S. Sakura, R.P. Buck, Bioelectrochem. Bioenerg. 28, 387 (1992)

    Article  CAS  Google Scholar 

  23. A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Anal. Chem. 56, 667 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The support by USDA Grant 2005-3439415674A is gratefully acknowledged. Authors would like to thank Dr. J. M. Barbaree and Dr. J. Hu for their help and thoughtful suggestions during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Guntupalli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guntupalli, R., Lakshmanan, R.S., Wan, J. et al. Analytical performance and characterization of antibody immobilized magnetoelastic biosensors . Sens. & Instrumen. Food Qual. 2, 27–33 (2008). https://doi.org/10.1007/s11694-007-9025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-007-9025-x

Keywords

Navigation