Skip to main content

Advertisement

Log in

Latitudinal Influence on the Sexual Dimorphism of the Marine Fish Bathygobius soporator (Gobiidae: Teleostei)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Environmental gradients in a marine setting may have significant effects on morphological variations and evolutionary patterns, including sexual dimorphism variations within and between fish populations. We analyzed sexual shape and size dimorphism in accordance with Rensch and Bergmann’s rules in five coastal populations of the gobiid Bathygobius soporator along 4000 km of the Brazilian coastline. The populations differ significantly in sexual body shape dimorphism, with a tendency toward reduced intrapopulation dimorphism, increasing with latitude. Body size variation was significant between populations and population vs. sex, and inverse to Bergmann’s rule. Moreover, size dimorphism among populations of B. soporator does not follow Rensch’s rule. These data represent a rare example of inter and intrapopulation spatial variation in sexual dimorphism associated with latitude in marine fish. This suggests a complex and particularized scenario of biotic and abiotic interactions acting on local populations of B. soporator in extensive coastal areas of the Western Atlantic, with profound implications for species evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alencar, C. E. R., Lima-Filho, P. A., Molina, W. F. F., & Freire, A. M. (2014). Sexual shape dimorphism of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda, Ucididae) accessed through geometric morphometric. The Scientific World Journal, doi:10.1155/2014/206168.

    PubMed  PubMed Central  Google Scholar 

  • Arntz, W., & Fahrbach, E. (1996). El Niño, experiment climático de la naturaliza. Mexico: Fondo de la Cultura Económica.

    Google Scholar 

  • Ashton, K. G., & Feldman, C. R. (2003). Bergmann’s rule in non- avian reptiles: turtles follow it, lizards and snakes reverse it. Evolution, 57, 1151–1163.

    Article  PubMed  Google Scholar 

  • Ashton, K. G., Tracy, M. C., & Queiroz, A. (2000). Is Bergmann’s rule valid for mammals? The American Naturalist, 156, 390–415.

    Google Scholar 

  • Badyaev, A. V. (2011). Origin of the fittest: Link between emergent variation and evolutionary change as a critical question in evolutionary biology. Proceedings of Royal Society, Biological Sciences, 278, 1921–1929.

    Article  Google Scholar 

  • Bergmann, C. (1847). Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger studien, 3, 595–708.

    Google Scholar 

  • Bidau, C. J. (2014). Some historical aspects of ecogeographic rules: Bergmann’s rule as an emblematic case. Entomology, Ornithology, Herpetology, 2, 1–10.

    Google Scholar 

  • Bidau, C. J., Marti, D. A., & Castillo, E. R. (2013). Rensch’s rule is not verified in melanopline grasshoppers (Acrididae). Journal of Insect Biodiversity, 1, 1–14.

    Article  Google Scholar 

  • Bidau, C. J., & Martí, D. A. (2008). Geographic and climatic factors related to a body-size cline in Dichroplus pratensis Bruner, 1900 (Acrididae, Melanoplinae). Journal of Orthoptera Research, 17, 149–156.

    Article  Google Scholar 

  • Bidau, C. J., Miño, C. I., Castillo, E. R., & Martí, D. A. (2012). Effects of abiotic factors on the geographic distribution of body size variation and chromosomal polymorphisms in two neotropical grasshopper species (Dichroplus : Melanoplinae: Acrididae). Psyche: A Journal of Entomology. doi:10.1155/2012/863947.

    Google Scholar 

  • Bidau, C. J., & Martinez, D. A. (2016). Sexual size dimorphism and Rensch’s rule in Canidae. Biological Journal of the Linnean Society, 119, 816–830.

    Article  Google Scholar 

  • Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W., & Ashton, K. G. (2006). When Rensch meets Bergmann, does sexual size dimorphism change with latitude? Evolution, 60, 2004–2011.

    Article  PubMed  Google Scholar 

  • Boughman, J. W. (2002). How sensory drive can promote speciation. Trends in Ecology and Evolution, 17, 571–577.

    Article  Google Scholar 

  • Brey, T. (1995). Temperature and reproductive metabolism in macrobenthic populations. Marine Ecology Progress Series, 30, 159–166.

    Google Scholar 

  • Clutton-Brock, T. H. (2009). Sexual selection in females. Animal Behaviour, 77, 3–11.

    Article  Google Scholar 

  • Cock, A. G. (1966). Genetical aspects of metrical growth and form in animals. Quarterly Review of Biology, 41, 131–190.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.

    Book  Google Scholar 

  • Delph, L. F., & Bell, D. (2008). A test of the differential-plasticity hypothesis for variation in the degree of sexual dimorphism in Silene latifolia. Evolutionary Ecology Research, 10, 61–75.

    Google Scholar 

  • Demartini, E. E. (1999). Intertidal spawning. In M. H. Horn, K. L. M. Martin & M. A. Chotkowski (Eds.), Intertidal fishes: Life in two worlds (pp. 143–164). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Díaz, M., Møller, A. P., Flensted-Jensen, E., Grim, T., Ibáñez-Álamo, J. D., Jokimäki, J., Markó, G., & Tryjanowski, P. (2013). The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE, 8, e64634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: John Wiley & Sons.

    Google Scholar 

  • Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology, Evolution and Systematics, 28, 659–687.

    Article  Google Scholar 

  • Fairbairn, D. J. (2005). Allometry for sexual size dimorphism: testing two hypotheses for Rensch’s rule in the water strider. Aquarius remigis. The American Naturalist, 116, 69–84.

    Google Scholar 

  • Fairbairn, D. J. (2013). Extraordinary differences between the sexes in the animal Kingdom. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Fairbairn, D. J., Blanckenhorn, W. U., & Székely, T. (2007). Sex, size and gender roles: evolutionary studies of sexual size dimorphism. New York: Oxford University Press.

    Book  Google Scholar 

  • Fairbairn, D. J., & Preziosi, R. F. (1994). Sexual selection and the evolution of allometry for sexual size dimorphism in the waterstrider, Aquarius remigis. The American Naturalist, 144, 101–118.

    Article  Google Scholar 

  • Fernandez-Montraveta, C., & Moya-Larano, J. (2007). Sex-specific plasticity of growth and maturation size in a spider: Implications for sexual size dimorphism. Journal of Evolutionary Biology, 20, 1689–1699.

    Article  CAS  PubMed  Google Scholar 

  • Forster, J., Hirst, A. G., & Woodward, G. (2011). Growth and development rates have different thermal responses. The American Naturalist, 178, 668–678.

    Article  PubMed  Google Scholar 

  • Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual selection. Nature, 403, 886–889.

    Article  CAS  PubMed  Google Scholar 

  • Georga, I., & Koumoundouros, G. (2010). Thermally induced plasticity of body shape in adult zebrafish Danio rerio (Hamilton, 1822). Journal of Morphology, 271, 1319–1327.

    Article  PubMed  Google Scholar 

  • Gibson, R. N., & Yoshiyama, R. M. (1999). Intertidal fish communities. In M. H. Horn, K. L. M. Martin, & M. A. Chotkowski (Eds.), Intertidal fishes: Life in two worlds (pp. 264–296). San Diego: Academic Press.

  • Glynn, P. W. (1988). El Niño-Southern Oscillation 1982–1983: nearshore population, community, and ecosystem responses. Annual Review of Ecology, Evolution and Systematics, 19, 309–345.

    Article  Google Scholar 

  • Gohli, J., & Voje, K. L. (2016). An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolutionary Biology, 16, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grove, J. (1985). Influence of the the 1982–1983 El Niño en la esla Galápagos: el evento de 1982–1983. Quito: Fundación Charles Darwin.

    Google Scholar 

  • Hendry, A. P., Kelly, M. L., Kinnison, M. T., & Reznick, D. N. (2006). Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology, 19, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Herczeg, G., Gonda, A., & Merila, J. (2010). Rensch’s rule inverted—female-driven gigantism in nine-spined stickleback Pungitius pungitius. Journal of Animal Ecology, 79, 581–588.

    Article  PubMed  Google Scholar 

  • Hernandez-Jimenez, A., & Rios-Cardenas, O. (2012). Natural versus sexual selection: Predation risk in relation to body size and sexual ornaments in the green swordtail. Animal Behaviour, 84, 1051–1059.

    Article  Google Scholar 

  • Hochachka, P. W., & Somero, G. N. (2002). Biochemical adaptation: Mechanism and process in physiological evolution. New York: Oxford University Press.

    Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., & Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, J., Breuker, C. J., Sadowski, J. A., & Moore, A. J. (2009). Male–male competition, female mate choice and their interaction: Determining total sexual selection. Journal of Evolutionary Biology. doi:10.1111/j.1420-9101.2008.01633.x.

    PubMed  Google Scholar 

  • Ingleby, F. C., Lewis, Z., & Wedell, N. (2010). Level of sperm competition promotes evolution of male ejaculate allocation patterns in a moth. Animal Behavior, 80, 37–43.

    Article  Google Scholar 

  • Isaac, J. (2005). Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal Review, 35, 101–115.

    Article  Google Scholar 

  • Karl, I., & Fischer, K. (2008). Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia, 155, 215–225.

    Article  PubMed  Google Scholar 

  • Kelly, C. D., Folinsbee, K. E., Adams, D. C., & Jennions, M. D. (2013). Intraspecific sexual size and shape dimorphism in an australian freshwater fish differs with respect to a biogeographic barrier and latitude. Journal of Evolutionary Biology, 40, 408–419.

    Article  Google Scholar 

  • Kendall, M. G., & Stuart, A. (1973). The Advanced Theory of Statistics. London: Charles Green.

    Google Scholar 

  • Kitano, J., Mori, S., & Peichel, C. L. (2012). Reduction of sexual dimorphism in stream resident forms of three-spined stickleback Gasterosteus aculeatus. Journal Fish Biology, 80, 136–146.

    Article  Google Scholar 

  • Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., & Monteiro, L. R. (2005). Distances and directions in multidimensional shape spaces: Implications for morphometric applications. Systematic Biology, 54, 678–688.

    Article  PubMed  Google Scholar 

  • Lande, R. (1982). Rapid origin of sexual isolation and character divergence in a cline. Evolution, 36, 213–223.

    Article  PubMed  Google Scholar 

  • Langerhans, R. B., Layman, C. A., & DeWitt, T. J. (2005). Male genital size reflects a trade-off between attracting mates and avoiding predators in two live-bearing fish species. Proceedings of the National Academy of Sciences of the United States of America, 102, 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langerhans, R. B., Layman, C. A., Shokrollahi, A. M., & DeWitt, T. J. (2004). Predator-driven phenotypic diversification in Gambusia affinis. Evolution, 58, 2305–2318.

    Article  PubMed  Google Scholar 

  • Leese, J. M., Snekser, J. L., Ganim, A., & Itzkowitz, M. (2009). Assessment and decision making in a Caribbean damselfish: Nest-site quality influences prioritization of court ship and brood defense. Biology Letters, 5, 180–198.

    Article  Google Scholar 

  • Lengkeek, W., Didderen, K., Côté, I. M., van der Zee, E. M., Snoek, R. C., & Reynolds, J. D. (2008). Plasticity in sexual size dimorphism and Rensch’s rule in Mediterranean blennies (Blenniidae). Canadian Journal of Zoology, 86, 1173–1178.

    Article  Google Scholar 

  • Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics (pp. 278–292). California: Stanford University.

    Google Scholar 

  • Liao, W. B. (2013). Evolution of sexual size dimorphism in a frog obeys the inverse of Rensch’s Rule. Evolutionary Biology, 40, 293–299.

    Article  Google Scholar 

  • Liao, W. B., & Chen, W. (2012). Inverse Rensch-rule in a frog with female-biased sexual size dimorphism. Die Naturwissenschaften, 99, 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Lima, D., Freitas, J. E. P., Araújo, M. E., & Solé-Cava, A. M. (2005). Genetic detection of cryptic species in the frillfin goby Bathygobius soporator. Journal of Experimental Marine Biology and Ecology, 320, 211–223.

    Article  Google Scholar 

  • Lima-Filho, P. A., Cioffi, M. B., Bertollo, L. A. C., & Molina, W. F. (2012). Chromosomal and morphological divergences in Atlantic populations of the frillfin goby Bathygobius soporator (Gobiidae, Perciformes). Journal Experimental Marine Biology Ecology, 43, 63–70.

    Article  Google Scholar 

  • Lima-Filho, P. A., Martinez, P. A., & Molina, W. F. (2010). Dimorfismo sexual e padrão de variação ontogenética em Bathygobius soporator (Valenciennes,1837) (Gobiidae—Perciformes) a partir de análises por morfometria geométrica. 62ª Reunião Anual da SBPC. Resumo 4277.

  • Lima-Filho, P. A., Rosa, R. S., Costa G. W. W. F., Souza, A. S., Oliveira, C., & Molina, W. F. (2016). Evolutionary diversification of Western Atlantic Bathygobius species based on cytogenetic, morphologic and DNA barcode data. Reviews in Fish Biology and Fisheries. Doi:10.1007/s11160-015-9411-0.

    Google Scholar 

  • Lumpkin, R., & Garzoli, S. L. (2005). Near-surface Circulation in the Tropical Atlantic Ocean. Deep-Sea Research, 52, 495–518.

    Article  Google Scholar 

  • Martinez, P. A., Amado, T. F., & Bidau, C. J. (2014). A phylogenetic approach to the study of sexual size dimorphism in Felidae and an assessment of Rensch’s rule. Ecosistemas, 23, 27–36.

    Article  Google Scholar 

  • Martinez, P. A., & Bidau, C. J. (2014). A re-assessment of Rensch’s rule in tuco-tucos (Rodentia: Ctenomyidae:Ctenomys) using a phylogenetic approach. Mammalian Biology, 81, 66–72.

    Article  Google Scholar 

  • Miller, P. J. (1961). Age, growth, and reproduction of the rock goby Gobius paganellus L., in the Isle of Man. Journal of the Marine Biological Association of the United Kingdom, 41, 737–769.

    Article  Google Scholar 

  • Molina, W. F., Shibatta, O. A., & Galetti-Jr, P. M. (2006). Multivariate morphological analyses in continental and island populations of Abudefduf saxatilis (Linnaeus) (Pomacentridae, Perciformes) of Western Atlantic. Pan-American Journal of Aquatic Sciences, 1, 49–56.

    Google Scholar 

  • Monteiro, L. R., Diniz-Filho, A. F., Reis, S. F., & Araújo, E. D. (2002). Geometric estimates of heritability in biological shape. Evolution, 56, 563–572.

    Article  PubMed  Google Scholar 

  • Mora, C., & Ospína, A. F. (2001). Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Marine Biology, 139, 765–769.

    Article  Google Scholar 

  • Nelson, J. S. (2006). Fishes of the world. New Jersey: Willey.

    Google Scholar 

  • Parker, G. A. (1992). The evolution of sexual size dimorphism in fish. Journal of Fish Biology, 41, 1–20.

    Article  Google Scholar 

  • Parsons, K. J., Beren, W. R., & Hrbek, T. (2003). Getting into shape: An empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to New World cichlids. Environmental Biology of Fishes, 67, 417–431.

    Article  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. Vienna: Austria: R Foundation for Statistical Computing. Accessed April 25, 2015, from http://www.R-project.org/.

  • Raihani, G., Sze´kely, T., Serrano-Meneses, M. A., Pitra, C., & Goriup, P. (2006). The influence of sexual selection and male agility on sexual size dimorphism in bustards (Otididae). Animal Behavior, 71, 833–838.

    Article  Google Scholar 

  • Rensch, B. (1950). Die Abhangigkeit der relativen Sexualdifferenz von der Korpergrosse. Bonner Zoologische Beitrage, 1, 58–69.

    Google Scholar 

  • Ritchie, M. G., Hamill, R. M., Graves, J. A., Magurran, A. E., Webb, S. A., & Macías, G. C. (2007). Sex and differentiation: Population genetic divergence and sexual dimorphism in Mexican goodeid fish. Journal Evolutionary Biology, 20, 2048–2055.

    Article  CAS  Google Scholar 

  • Rohlf, F. J. (2006). tpsDig version 2.10. Ecology and evolution. Suny at Stony Brook. Accessed June 15, 2015, http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J. (2013). Tps Series. Department of Ecology and Evolution, State University of New York, Stony Brook, New York. Accessed June 15, 2015, http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J., & Slice, D. E. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.

    Article  Google Scholar 

  • Samia, S. M. D., Møller, A. P., Blumstein, D. T., Stankowich, T., & Cooper, W. E. (2015). Sex differences in lizard escape decisions vary with latitude, but not sexual dimorphism. Proceedings of the Royal Society B, doi:10.1098/rspb.2015.0050.

    PubMed  PubMed Central  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for Normality (complete samples). Biometrika, 52, 591–611.

    Article  Google Scholar 

  • Shelomi, M. (2012). Where are we now? Bergmann’s rule sensu lato in insects. American Naturalist, 180, 511–519.

    Article  PubMed  Google Scholar 

  • Shine, R. (1989). Ecological Causes for the evolution of sexual dimorphism: A review of the evidence. The Quarterly Review of Biology, 64, 419–461.

    Article  CAS  PubMed  Google Scholar 

  • Sidlauskas, B. L., Mol, J. H., & Vari, R. P. (2011). Dealing with allometry in linear and geometricmorphometrics: A taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zoological Journal of the Linnean Society, 162, 103–130.

    Article  Google Scholar 

  • Smith, R. J. (1999). Statistics of sexual size dimorphism. Journal of Human Evolution, 36, 423–459.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R. J. (2009). Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology, 140, 476–486.

    Article  PubMed  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1985). Biometry. New York: W.H. Freeman and Company.

    Google Scholar 

  • Somero, G. N. (2002). Thermal physiology and vertical zonation of intertidal animals: Optima, limits and cost of living. Integrative and Comparative Biology, 42, 780–789.

    Article  PubMed  Google Scholar 

  • Stillwell, R. C., & Fox, C. W. (2007). Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia, 153, 273–280.

    Article  PubMed  Google Scholar 

  • Stramma, L., & England, M. (1999). On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research Washington, 104, 863–883.

    Article  Google Scholar 

  • Stuart-Fox, D. M., & Ord, T. J. (2004). Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proceedings of the Royal Society of London. Series B, Biological Sciences, 271, 2249–2255.

    Article  Google Scholar 

  • Tavolga, W. N. (1950). Development of the gobiid fish, Bathygobius soporator. Journal of Morphology, 87, 467–492.

    Article  CAS  PubMed  Google Scholar 

  • Thacker, C. E. (2003). Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution, 26, 354–368.

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi, M., Gonzalez-Voyer, A., Hoglund, J., & Kolm, N. (2012). Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evolutionary Ecology, 26, 171–185.

    Article  Google Scholar 

  • Walsh, M. R., & Reznick, D. N. (2009). Phenotypic diversification across an environmental gradient: A role for predators and resource availability on the evolution of life histories. Evolution, 63, 3201–3213.

    Article  PubMed  Google Scholar 

  • Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). Smatr 3—an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257–259.

    Article  Google Scholar 

  • Warton, D. I., Wright, I. J., Falster, D. S., & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259–291.

    Article  PubMed  Google Scholar 

  • Webb, T. J., & Freckleton, R. P. (2007). Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s Rule. PLoS ONE, 2(9), e897. doi:10.1371/journal.pone.0000897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, B. B. M., & Candolin, U. (2005). How is female mate choice affected by male competition? Biological Reviews of the Cambridge Philosophical Society, 80, 559–571.

    Article  PubMed  Google Scholar 

  • Zar, J. H. (2010). Biostatistical Analysis. Upper Saddle River, NJ: Pearson Prentice-Hall.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Coordination for the Improvement of Higher Education Teaching Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq) (Project No. 556793/2009-9) for their financial support, and to IBAMA (Process No. 19135/1) and José Garcia Júnior for taxonomic identification of species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Augusto Lima-Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima-Filho, P.A., Bidau, C.J., Alencar, C.E.R.D. et al. Latitudinal Influence on the Sexual Dimorphism of the Marine Fish Bathygobius soporator (Gobiidae: Teleostei). Evol Biol 44, 374–385 (2017). https://doi.org/10.1007/s11692-017-9416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9416-9

Keywords

Navigation