Skip to main content
Log in

Intraspecific Sexual Size and Shape Dimorphism in an Australian Freshwater Fish Differs with Respect to a Biogeographic Barrier and Latitude

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Geographically structured variation in morphology is a common phenomenon in animals with environmental factors covarying with both latitude and biogeographic barriers having profound impacts on body size and shape. The Pacific blue-eye (Pseudomugil signifer) is a freshwater fish that lives along Australia’s east coast and occurs on either side of a terrestrial barrier, the Burdekin Gap. By quantifying the size and shape of males and females from 10 populations we found that Pacific blue-eyes are not sexually size dimorphism north of the Burdekin Gap whereas the degree of dimorphism was dependent upon latitude south of the barrier. Rensch’s rule was not supported as the degree of male-biased size dimorphism did not increase with increasing population mean body size. Body shape was related to body size and was sexually dimorphic south of the Burdekin Gap but not north of it. Our study represents a rare case of identifying how both body size and shape differ with respect to latitude and a major terrestrial biogeographic barrier and lends further support to the notion that P. signifer may comprise two species, or incipient species, that are separated by the Burdekin Gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abell, A., Cole, B., Reyes, R., & Wiernasz, D. (1999). Sexual selection on body size and shape in the western harvester ant, Pogonomyrmex occidentalis cresson. Evolution, 53, 535–545.

    Article  Google Scholar 

  • Adams, D. C., & Church, J. O. (2008). Amphibians do not follow Bergmann’s rule. Evolution, 62, 413–420.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Church, J. O. (2011). The evolution of large-scale body size clines in Plethodon salamanders: Evidence of heat-balance or species-specific artifact? Ecography, 34, 1067–1075.

    Article  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61, 510–515.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63, 1143–1154.

    Article  PubMed  Google Scholar 

  • Adams, D. C., & Otarola-Castillo, E. (2012). Geomorph: Software for geometric morphometric analyses. R package version 1.1-0. http://cran.r-project.org/web/packages/geomorph/index.html.

  • Adams, D. C., & Otarola-Castillo, E. (2013). Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution (in press).

  • Adams, D. C., & Nistri, A. (2010). Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evol Biol, 10.

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology, 71, 5–16.

    Article  Google Scholar 

  • Allen, G., Midgley, S., & Allen, M. (2003). Field guide to the freshwater fishes of Australia. Collingwood, Vic: CSIRO Publishing.

    Google Scholar 

  • Anderson, M., & ter Braak, C. (2003). Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 73, 85–113.

    Article  Google Scholar 

  • Angilletta, M., & Dunham, A. (2003). The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. The American Naturalist, 162, 332–342.

    Article  PubMed  Google Scholar 

  • Belk, M. C., & Houston, D. D. (2002). Bergmann’s rule in ectotherms: A test using freshwater fishes. The American Naturalist, 160, 803–808.

    Article  PubMed  Google Scholar 

  • Bergmann, C. (1847). Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Studien, 3, 595–708.

    Google Scholar 

  • Berns, C. M., & Adams, D. C. (2010). Bill shape and sexual shape dimorphism between two species of temperate hummingbirds: Black-chinned hummingbird (Archilochus alexandri) and ruby-throated hummingbird (A. colubris). The Auk, 127, 626–635.

    Article  Google Scholar 

  • Blanckenhorn, W. (2005). Behavioral causes and consequences of sexual size dimorphism. Ethology, 111, 977–1016.

    Article  Google Scholar 

  • Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integrative and Comparative Biology, 44, 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W., & Ashton, K. G. (2006). When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? Evolution, 60, 2004–2011.

    PubMed  Google Scholar 

  • Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science, 1, 181–222.

    Article  Google Scholar 

  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243.

    Article  PubMed  CAS  Google Scholar 

  • Bookstein, F., Schäfer, K., Prossinger, H., Seidler, H., Fieder, M., Stringer, C., et al. (1999). Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. Anatomical Record Part B, New Anatomist, 257, 217–224.

    Article  CAS  Google Scholar 

  • Brown, M., Cooksley, H., Carthew, S. M., & Cooper, S. J. B. (2006). Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of Zoology, 54, 305–317.

    Article  Google Scholar 

  • Burns, J. G., Di Nardo, P., & Rodd, F. H. (2009). The role of predation in variation in body shape in guppies Poecilia reticulata: A comparison of field and common garden phenotypes. Journal of Fish Biology, 75, 1144–1157.

    Article  PubMed  CAS  Google Scholar 

  • Butler, M. A., & Losos, J. (2002). Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecological Monographs, 72, 541–559.

    Article  Google Scholar 

  • Butler, M. A., Sawyer, S. A., & Losos, J. B. (2007). Sexual dimorphism and adaptive radiation in Anolis lizards. Nature, 447, 202–205.

    Article  PubMed  CAS  Google Scholar 

  • Chapple, D. G., Hoskin, C. J., Chapple, S. N., & Thompson, M. B. (2011). Phylogeographic divergence in the widespread delicate skink (Lampropholis delicata) corresponds to dry habitat barriers in eastern Australia. BMC Evolutionary Biology, 11, 191.

    Article  PubMed  Google Scholar 

  • Claude, J. (2008). Morphometrics with R. Springer Verlag.

  • Collyer, M. L., & Adams, D. C. (2007). Analysis of two-state multivariate phenotypic change in ecological studies. Ecology, 88, 683–692.

    Article  PubMed  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2008). The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences, 275, 71–76.

    Article  PubMed  Google Scholar 

  • Endler, J. (1995). Multiple-trait coevolution and environmental gradients in guppies. Trends in Ecology & Evolution, 10, 22–29.

    Article  CAS  Google Scholar 

  • Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687.

    Article  Google Scholar 

  • Fairbairn, D. J. (2005). Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. The American Naturalist, 166, S69–S84.

    Article  PubMed  Google Scholar 

  • Fairbairn, D. J., & Preziosi, R. (1994). Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remigis. The American Naturalist, 144, 101–118.

    Article  Google Scholar 

  • Felsenstein, J. (2002). Quantitative characters, phylogenies and morphometrics. In N. MacLeod & P. Forey (Eds.), Morphology, Shape and Phylogeny (pp. 27–44). Bova Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Fitzpatrick, B. M. (2012). Underappreciated consequences of phenotypic plasticity for ecological speciation. International Journal of Ecology, 2012, 1–12.

    Article  Google Scholar 

  • Georga, I., & Koumoundouros, G. (2010). Thermally induced plasticity of body shape in adult zebrafish Danio rerio (Hamilton, 1822). Journal of Morphology, 271, 1319–1327.

    Article  PubMed  Google Scholar 

  • Hadfield, A., Ivantsoff, V., & Johnson, P. (1979). Clinal variation in electrophoretic and morphological characters between two nominal species of the genus Pseudomugil (Pisces: Atheriniformes: Pseudomugilidae). Marine & Freshwater Research, 30, 375–386.

    Article  Google Scholar 

  • Hendry, A., Kelly, M. L., Kinnison, M. T., & Reznick, D. N. (2006). Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology, 19, 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Herczeg, G., Gonda, A., & Merilä, J. (2010). Rensch’s rule inverted—female-driven gigantism in nine-spined stickleback Pungitius pungitius. Journal of Animal Ecology, 79, 581–588.

    Article  PubMed  Google Scholar 

  • Joseph, L., & Moritz, C. (1994). Mitochondrial DNA phylogeography of birds in eastern Australian rainforests: First fragments. Australian Journal of Zoology, 42, 385–403.

    Article  CAS  Google Scholar 

  • Kaliontzopoulou, A., Adams, D. C., Meijden, A., Perera, A., & Carretero, M. A. (2012). Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards. Evolutionary Ecology, 26, 825–845.

    Article  Google Scholar 

  • Kelly, C. D., & Adams, D. C. (2010). Sexual selection, ontogenetic acceleration, and hypermorphosis generates male trimorphism in Wellington tree weta. Evolutionary Biology, 37, 200–209.

    Article  Google Scholar 

  • Kelly, C. D., Bussiere, L. F., & Gwynne, D. (2008). Sexual selection for male mobility in a giant insect with female-biased size dimorphism. The American Naturalist, 172, 417–423.

    Article  PubMed  Google Scholar 

  • Langerhans, R., & DeWitt, T. (2004). Shared and unique features of evolutionary diversification. The American Naturalist, 164, 335–349.

    Article  PubMed  Google Scholar 

  • Langerhans, R., Layman, C., Shokrollahi, A., & DeWitt, T. (2004). Predator-driven phenotypic diversification in Gambusia affinis. Evolution, 58, 2305–2318.

    PubMed  Google Scholar 

  • Lengkeek, W., Didderen, K., Cote, I. M., van der Zee, E. M., Snoek, R. C., & Reynolds, J. D. (2008). Plasticity in sexual size dimorphism and Rensch’s rule in Mediterranean blennies (Blenniidae). Canadian Journal of Zoology, 86, 1173–1178.

    Article  Google Scholar 

  • McGlashan, D., & Hughes, J. (2002). Extensive genetic divergence among populations of the Australian freshwater fish, Pseudomugil signifer (Pseudomugilidae), at different hierarchical scales. Marine Freshwater Research.

  • Outomuro, D., & Johansson, F. (2011). The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biological Journal of the Linnean Society, 102, 263–274.

    Article  Google Scholar 

  • Pusey, B., Kennard, M., & Arthington, A. (2004). Freshwater fishes of North-Eastern Australia. Collingwood, Vic: Csiro Publishing.

    Google Scholar 

  • Rensch, B. (1960). Evolution above the species level. New York: Columbia University Press.

    Google Scholar 

  • Rohlf, F. J. (2010). tpsRelw: Relative warps analysis.

  • Rohlf, F. J., & Marcus, L. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132.

    Article  Google Scholar 

  • Rohlf, F. J., & Slice, D. E. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.

    Article  Google Scholar 

  • Schäuble, C. (2004). Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biological Journal of the Linnean Society, 82, 39–56.

    Article  Google Scholar 

  • Serb, J. M., Alejandrino, A., Otarola-Castillo, E., & Adams, D. C. (2011). Morphological convergence of shell shape in distantly related scallop species (Mollusca: Pectinidae). Zoological Journal of the Linnean Society, 163, 571–584.

    Article  Google Scholar 

  • Stone, G. N., Nee, S., & Felsenstein, J. (2011). Controlling for non-independence in comparative analysis of patterns across populations within species. Philosophical Transactions of the Royal Society B: Biological SciencesB, 366, 1410–1424.

    Article  Google Scholar 

  • Szekely, T., Freckleton, R., & Reynolds, J. (2004). Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proceedings of the National Academy of Sciences of the United States of America, 101, 12224–12227.

    Article  PubMed  CAS  Google Scholar 

  • Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 108, 321–334.

    Article  Google Scholar 

  • Unmack, P. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography, 28, 1053–1089.

    Article  Google Scholar 

  • Verhoeven, K. J. F., Simonsen, K. L., & McIntyre, L. M. (2005). Implementing false discovery rate control: Increasing your power. Oikos, 108, 643–647.

    Article  Google Scholar 

  • Wiley, E. (1988). Parsimony analysis and vicariance biogeography. Systematic Zoology, 37, 271–290.

    Article  Google Scholar 

  • Wong, B. (2004). Superior fighters make mediocre fathers in the Pacific blue-eye fish. Animal Behaviour, 67, 583–590.

    Article  Google Scholar 

  • Wong, B., Keogh, J., & Jennions, M. D. (2004a). Mate recognition in a freshwater fish: Geographical distance, genetic differentiation, and variation in female preference for local over foreign males. Journal of Evolutionary Biology, 17, 701–708.

    Article  PubMed  CAS  Google Scholar 

  • Wong, B., Keogh, J., & McGlashan, D. (2004b). Current and historical patterns of drainage connectivity in eastern Australia inferred from population genetic structuring in a widespread freshwater fish Pseudomugil signifer (Pseudomugilidae). Molecular Ecology, 13, 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Young, K. A. (2005). Life-history variation and allometry for sexual size dimorphism in Pacific salmon and trout. Proceedings of the Royal Society of London. Series B: Biological Sciences, 272, 167–172.

    Article  PubMed  Google Scholar 

  • Zelditch, M., Swiderski, D., Sheets, H., & FINK, W. (2004). Geometric morphometrics for biologists. London: Academic Press.

    Google Scholar 

Download references

Acknowledgments

We thank Mark McGrouther (Ichthyology, Collection Manager) for access to preserved P. signifer at the Australian Museum and Hugh Spencer (Cape Tribulation Tropical Research Station) for advice and hospitality and two anonymous referees for their valuable input. Fish were collected under a Queensland General Fisheries Permit. This work was supported by an A.N.U. Faculty of Science Research Grant and Iowa State University faculty start-up funds to CDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clint D. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, C.D., Folinsbee, K.E., Adams, D.C. et al. Intraspecific Sexual Size and Shape Dimorphism in an Australian Freshwater Fish Differs with Respect to a Biogeographic Barrier and Latitude. Evol Biol 40, 408–419 (2013). https://doi.org/10.1007/s11692-013-9224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9224-9

Keywords

Navigation