Skip to main content
Log in

Head, Body and Fins: Patterns of Morphological Integration and Modularity in Fishes

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Actinopterygians demonstrate high levels of morphological disparity, especially in the variation of fin positions, sizes and shapes. One hypothesis to explain the diversity of fin morphologies is that it is facilitated by a modular organization. According to this hypothesis, fin modules would be quasi-independent during ontogeny or evolution, facilitating their evolvability. We investigated variational modularity of fins in two cyprinid species, the zebrafish (Danio rerio) and the Northern redbelly dace (Chrosomus eos), to determine which subsets of fins are quasi-independent and which are most highly integrated in positioning. Hypotheses of modularity were evaluated using a combination of methods suitable for analyses of landmarks. The hypothesis that the dorsal and anal fins belong to a posterior trunk and tail module is strongly supported, a finding that can be explained by the use of subcarangiform locomotion in these two species. There is also some support for the hypothesis that the paired fins and head region each constitute variational modules. The support for fin variational modules is weaker than expected considering the wealth of developmental evidence supporting fin modularity. This might be related to a dissociation of the fin positioning modules during actinopterygian evolution, a process that had already been suggested for the dorsal and anal fins. Alternatively, the fin modules inferred from developmental data might not directly translate into variational modules: variational modules can incorporate the signals from numerous partially overlapping developmental processes so that one to one correspondence between developmental and variational modules is not always expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe, G., Ide, H., & Tamura, K. (2007). Function of FGF signaling in the developmental process of the median fin fold in zebrafish. Developmental Biology, 304(1), 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111(4), 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Adams, D. C., & Otarola-Castillo, E. (2013). geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4), 393–399.

    Article  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: Geometric morphometrics in the 21st century. Hystrix, Italian Journal of Mammalogy, 24(1), 7–14.

    Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Balfour, F. M. (1876). The development of elasmobranch fishes. The Journal of Anatomy and Physiology, 11(1), 128–172.

    CAS  PubMed  Google Scholar 

  • Balfour, F. M. (1878). A monograph on the development of elasmobranch fishes (p. 295). London: MacMillan.

    Book  Google Scholar 

  • Balfour, F. M. (1881). On the development of the skeleton of the paired fins of Elasmobranchii, considered in relation to its bearings on the nature of the limbs of the Vertebrata. Proceedings of the Zoological Society of London 1881 (pp. 656–671).

  • Bemis, W. E., & Grande, L. (1999). Development of the median fins of the North American paddlefish (Polyodon spathula), and a reevaluation of the lateral fin-fold hypothesis. In G. Arratia & H.-P. Schultze (Eds.), Mesozoic fishes 2—Systematics and fossil record (pp. 41–68). München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Bolker, J. A. (2000). Modularity in development and why it matters to evo-devo. American Zoologist, 40(5), 770–776.

    Article  Google Scholar 

  • Bonner, J. T. (1988). The evolution of complexity by means of natural selection (p. 260). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1(3), 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff, B., & Magwene, P. M. (1999). Afterword—Morphological integration: Forty years later. In E. C. Olson & C. G. Miller (Eds.), Morphological integration (pp. 319–353). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36(3), 499–516.

    Article  Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36(1), 44–50.

    Google Scholar 

  • Cheverud, J. M., Hartman, S. E., Richtsmeier, J. T., & Atchley, W. R. (1991). A quantitative genetic analysis of localized morphology in mandibles of inbred mice using finite element scaling analysis. Journal of Craniofacial Genetics and Developmental Biology, 1991(11), 122–137.

    Google Scholar 

  • Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38(3), 201–213.

    Article  Google Scholar 

  • Cloutier, R. (2010). The fossil record of fish ontogenies: Insights into developmental patterns and processes. Seminars in Cell & Developmental Biology, 21(4), 400–413.

    Article  CAS  Google Scholar 

  • Coates, M. I. (1993). Hox genes, fin folds and symmetry. Nature, 364, 195–196.

    Article  Google Scholar 

  • Coates, M. I. (1994). The origin of vertebrate limbs. In M. Akam, P. Holland, P. Ingham & G. Wray (Eds.), The evolution of developmental mechanisms (pp. 169–180). Cambridge, UK: The Company of Biologists Limited.

    Google Scholar 

  • Coates, M. I., & Cohn, M. J. (1998). Fins, limbs, and tails: Outgrowths and axial patterning in vertebrate evolution. BioEssays, 20(5), 371–381.

    Article  Google Scholar 

  • Coates, M. I., Jeffery, J. E., & Ruta, M. (2002). Fins to limbs: What the fossils say. Evolution & Development, 4(5), 390–401.

    Article  Google Scholar 

  • Crotwell, P. L., Clark, T. G., & Mabee, P. M. (2001). Gdf5 is expressed in the developing skeleton of median fins of late-stage zebrafish, Danio rerio. Development Genes and Evolution, 211(11), 555–558.

    Article  CAS  PubMed  Google Scholar 

  • Crotwell, P. L., & Mabee, P. M. (2007). Gene expression patterns underlying proximal-distal skeletal segmentation in late-stage zebrafish, Danio rerio. Developmental Dynamics, 236(11), 3111–3128.

    Article  CAS  PubMed  Google Scholar 

  • Crotwell, P. L., Sommervold, A. R., & Mabee, P. M. (2004). Expression of bmp2a and bmp2b in late-stage zebrafish median fin development. Gene Expression Patterns, 5(2), 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, D. (1995). Introduction to graphical modelling (p. 274). New York, NY: Springer.

    Book  Google Scholar 

  • Edwards, D. (2000). Introduction to graphical modelling (2nd ed., p. 352). New York, NY: Springer.

    Book  Google Scholar 

  • Edwards, D. (2004). MIM—A program for graphical modelling. Version 3.2.0.7.

  • Engeszer, R. E., Patterson, L. B., Rao, A. A., & Parichy, D. M. (2007). Zebrafish in the wild: A review of natural history and new notes from the field. Zebrafish, 4(1), 21–40.

    Article  PubMed  Google Scholar 

  • Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29(4), 751–760.

    Article  Google Scholar 

  • Freitas, R., Gómez-Skarmeta, J. L., & Rodrigues, P. N. (2014). New frontiers in the evolution of fin development. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 322B(7), 540–552.

    Article  Google Scholar 

  • Freitas, R., Zhang, G. J., & Cohn, M. J. (2006). Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature, 442(7106), 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  • Freitas, R., Zhang, G. J., & Cohn, M. J. (2007). Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PLoS ONE, 2(8), e754.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goodrich, E. S. (1906). Notes on the development, structure, and origin of the median and paired fins of fish. Quarterly Journal of Microscopical Science, 50, 333–376.

    Google Scholar 

  • Green, W. D. K. (1996). The thin-plate spline and images with curving features. In K. V. Mardia, C. A. Gill & I. L. Dryden (Eds.), Proceedings in image fusion and shape variability techniques (pp. 79–87). Leeds, UK: Leeds University Press.

  • Grünbaum, T., Cloutier, R., & Vincent, B. (2012). Dynamic skeletogenesis in fishes: Insight of exercise training on developmental plasticity. Developmental Dynamics, 241(10), 1507–1524.

    Article  PubMed  Google Scholar 

  • Hall, B. K. (2010). Charles Darwin, embryology, evolution and skeletal plasticity. Journal of Applied Ichthyology, 26(2), 148–151.

    Article  Google Scholar 

  • Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., & Marcucio, R. S. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355–376.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. Yearbook of Physical Anthropology, 45, 131–158.

    Article  Google Scholar 

  • Hanke, G. F., & Wilson, M. V. H. (2006). Anatomy of the Early Devonian acanthodian Brochoadmones milesi based on nearly complete body fossils, with comments on the evolution and development of paired fins. Journal of Vertebrate Paleontology, 26(3), 526–537.

    Article  Google Scholar 

  • Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69(2–3), 83–94.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., Armbruster, W. S., Carlson, M. L., & Pelabon, C. (2003). Evolvability and genetic constraint in Dalechampia blossoms: Genetic correlations and conditional evolvability. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 296B(1), 23–39.

    Article  Google Scholar 

  • He, S. P., Mayden, R. L., Wang, X. Z., Wang, W., Tang, K. L., Chen, W. J., & Chen, Y. Y. (2008). Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: Further evidence from a nuclear gene of the systematic chaos in the family. Molecular Phylogenetics and Evolution, 46(3), 818–829.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology Evolution and Systematics, 39, 115–132.

    Article  Google Scholar 

  • Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution & Development, 11(4), 405–421.

    Article  Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution & Development, 5(5), 522–531.

    Article  Google Scholar 

  • Kuratani, S. (2009). Modularity, comparative embryology and evo-devo: Developmental dissection of evolving body plans. Developmental Biology, 332(1), 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Lauder, G. V., & Drucker, E. G. (2004). Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE Journal of Oceanic Engineering, 29(3), 556–571.

    Article  Google Scholar 

  • Lauder, G. V., & Liem, K. F. (1983). The evolution and interrelationships of the actinopterygian fishes. Bulletin of the Museum of Comparative Zoology, 150(3), 95–197.

    Google Scholar 

  • Lauritzen, S. L. (1996). Graphical models (p. 298). Oxford: Clarendon Press.

    Google Scholar 

  • Lindsey, C. C. (1978). Form, function, and locomotory habits in fish. In W. S. Hoar & D. J. Randall (Eds.), Fish physiology: Locomotion (Vol. VII, pp. 1–100). New York, NY: Academic Press.

    Google Scholar 

  • Mabee, P. M., Crotwell, P. L., Bird, N. C., & Burke, A. C. (2002). Evolution of median fin modules in the axial skeleton of fishes. Journal of Experimental Zoology (Molecular and Developmental Evolution), 294(2), 77–90.

    Article  Google Scholar 

  • Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55(9), 1734–1745.

    Article  CAS  PubMed  Google Scholar 

  • Magwene, P. M. (2009). Statistical methods for studying modularity: A reply to Mitteroecker and Bookstein. Systematic Biology, 58(1), 146–149.

    Article  PubMed  Google Scholar 

  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209–220.

    CAS  PubMed  Google Scholar 

  • Marchetti, G. M., Drton, M., & Sadeghi, K. (2014). ggm: A package for graphical Markov models. Version 2.0.

  • Marquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62(10), 2688–2708.

    Article  PubMed  Google Scholar 

  • Marquez, E. J. (2014). Mint: Modularity and integration analysis tool for morphometric data. Version, 1, 61.

    Google Scholar 

  • McClure, M. M., McIntyre, P. B., & McCune, A. R. (2006). Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. Journal of Fish Biology, 69(2), 553–570.

    Article  Google Scholar 

  • Mivart, S. G. (1879). Notes on the fins of elasmobranchs, with considerations on the nature and homologues of vertebrate limbs. Transactions of the Zoological Society of London, 10, 439–484.

    Article  Google Scholar 

  • Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7(5), 429–439.

    Article  Google Scholar 

  • Nelson, J. S. (2006). Fishes of the world (4th ed., p. 601). Hoboken, NJ: Wiley.

    Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., et al. (2013). vegan: Community ecology package. Version 2.0-10.

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration (p. 317). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Parsons, K. J., Marquez, E., & Albertson, R. C. (2012). Constraint and opportunity: The genetic basis and evolution of modularity in the cichlid mandible. American Naturalist, 179(1), 64–78.

    Article  PubMed  Google Scholar 

  • Pavlicev, M., & Hansen, T. F. (2011). Genotype–phenotype maps maximizing evolvability: Modularity revisited. Evolutionary Biology, 38(4), 371–389.

    Article  Google Scholar 

  • Phillips, G. L. (1969). Morphology and variation of the American cyprinid fishes Chrosomus erythrogaster and Chrosomus eos. Copeia, 1969(3), 501–509.

    Article  Google Scholar 

  • Plaut, I., & Gordon, M. S. (1994). Swimming metabolism of wild-type and cloned zebrafish Brachydanio rerio. Journal of Experimental Biology, 194(1), 209–223.

    PubMed  Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. Version 3.0.3. Vienna, Austria: R Foundation for Statistical Computing.

  • Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form (p. 544). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Richtsmeier, J. T., Lele, S. R., & Cole, T. M, I. I. I. (2005). Landmark morphometrics and the analysis of variation. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 49–69). Amsterdam: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Rohlf, F. J. (2013a). tps Utiliy Program. Version 1.58. Stony Brook University, NY.

  • Rohlf, F. J. (2013b). tpsDig. Version 2.17. Stony Brook University, NY.

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59.

    Article  Google Scholar 

  • Rosen, D. E. (1982). Teleostean interrelationships, morphological function and evolutionary inference. American Zoologist, 22(2), 261–273.

    Google Scholar 

  • Ruvinsky, I., & Gibson-Brown, J. J. (2000). Genetic and developmental bases of serial homology in vertebrate limb evolution. Development, 127(24), 5233–5244.

    CAS  PubMed  Google Scholar 

  • Sampson, P. D., Bookstein, F. L., Sheehan, H., & Bolson, E. L. (1996). Eigenshape analysis of left ventricular outlines from contrast ventriculograms. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, & D. E. Slice (Eds.), Advances in morphometrics (pp. 131–152). New York: Plenum Press.

    Google Scholar 

  • Schlosser, G., & Wagner, G. P. (2004). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Scott, W. B., & Crossman, E. J. (1973). Freshwater fishes of Canada. Bulletin of the Fisheries Research Board of Canada, 184, 1–966.

    Google Scholar 

  • Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237–252.

    Article  Google Scholar 

  • Shubin, N. H., & Davis, M. C. (2004). Modularity in the evolution of vertebrate appendages. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 429–440). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (1997). Fossils, genes and the evolution of animal limbs. Nature, 388(6643), 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, T. A., Smith, W. L., & Coates, M. I. (2014). The origins of adipose fins: An analysis of homoplasy and the serial homology of vertebrate appendages. Proceedings of the Royal Society B-Biological Sciences, 281(1781), 20133120.

    Article  PubMed Central  Google Scholar 

  • Tanaka, M., Munsterberg, A., Anderson, W. G., Prescott, A. R., Hazon, N., & Tickle, C. (2002). Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature, 416(6880), 527–531.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, M., & Onimaru, K. (2012). Acquisition of the paired fins: A view from the sequential evolution of the lateral plate mesoderm. Evolution & Development, 14(5), 412–420.

    Article  Google Scholar 

  • Thacher, J. K. (1877). Median and paired fins, a contribution to the history of vertebrate limbs. Transactions of the Connecticut Academy of Arts and Science, 3, 281–308.

    Google Scholar 

  • von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements of a conceptual framework for evo-devo. Journal of Experimental Zoology, 285(4), 307–325.

    Article  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36(1), 36–43.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50(3), 967–976.

    Article  Google Scholar 

  • Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser & G. P. Wagner (Eds.), Modularity in Development and Evolution (pp. 338–358). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8(12), 921–931.

    Article  CAS  PubMed  Google Scholar 

  • Webb, P. W. (1975). Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Board of Canada, 190, 1–158.

    Google Scholar 

  • Webb, P. W. (1982). Locomotor patterns in the evolution of actinopterygian fishes. American Zoologist, 22(2), 329–342.

    Google Scholar 

  • Webb, P. W. (1984). Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24(1), 107–120.

    Google Scholar 

  • Whittaker, J. (1990). Graphical models in applied mathematical multivariate statistics (p. 462). New York, NY: Wiley.

    Google Scholar 

  • Yamanoue, Y., Setiamarga, D. H. E., & Matsuura, K. (2010). Pelvic fins in teleosts: Structure, function and evolution. Journal of Fish Biology, 77(6), 1173–1208.

    Article  CAS  PubMed  Google Scholar 

  • Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59(12), 2691–2704.

    Article  PubMed  Google Scholar 

  • Young, N. M., Wagner, G. P., & Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3400–3405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zelditch, M. L. (1987). Evaluating models of developmental integration in the laboratory rat using confirmatory factor analysis. Systematic Zoology, 36(4), 368–380.

    Article  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer (2nd ed., p. 478). London: Elsevier Academic Press.

    Google Scholar 

  • Zelditch, M. L., Wood, A. R., Bonett, R. M., & Swiderski, D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution & Development, 10(6), 756–768.

    Article  Google Scholar 

  • Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building developmental integration into functional systems: Function-induced integration of mandibular shape. Evolutionary Biology, 36(1), 71–87.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank V. Roy for his help in managing the order of the D. rerio specimens and maintenance of the aquaria. We also thank an anonymous reviewer for his suggestions. This work was supported by the Natural Sciences and Engineering Research Council of Canada (PGS-D 155707997 to O.L.; NSERC Discovery Grant 238612 to R.C.).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

Experiments complied with the current laws in Canada. Handling of animals complied with the guidelines of the Canadian Council of Animal Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cloutier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larouche, O., Cloutier, R. & Zelditch, M.L. Head, Body and Fins: Patterns of Morphological Integration and Modularity in Fishes. Evol Biol 42, 296–311 (2015). https://doi.org/10.1007/s11692-015-9324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9324-9

Keywords

Navigation