Skip to main content

Advertisement

Log in

Genotype-Phenotype Maps Maximizing Evolvability: Modularity Revisited

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The mechanisms translating genetic to phenotypic variation determine the distribution of heritable phenotypic variance available to selection. Pleiotropy is an aspect of this structure that limits independent variation of characters. Modularization of pleiotropy has been suggested to promote evolvability by restricting genetic covariance among unrelated characters and reducing constraints due to correlated response. However, modularity may also reduce total genetic variation of characters. We study the properties of genotype-phenotype maps that maximize average conditional evolvability, measured as the amount of unconstrained genetic variation in random directions of phenotypic space. In general, maximal evolvability occurs by maximizing genetic variance and minimizing genetic covariance. This does not necessarily require modularity, only patterns of pleiotropy that cancel on average. The detailed structure of the most evolvable genotype-phenotype maps depends on the distribution of molecular variance. When molecular variance is determined by mutation-selection equilibrium either highly pleiotropic or highly modular genotype-phenotype maps can be optimal, depending on the mutation rate and the relative strengths of stabilizing selection on the characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert, A. Y., Sawaya, S., Vines, T. H., Knecht, A. K., Miller, C. T., Summers, B. R., et al. (2008). The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size. Evolution, 62(1), 76–85.

    PubMed  Google Scholar 

  • Albertson, R. C., Streelman, J. T., Kocher, T. D., & Yelick, P. C. (2005). Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. Proceedings of National Academic of Science USA, 102(45), 16287–16292.

    Article  CAS  Google Scholar 

  • Allen, C. E., Beldade, P., Zwaan, B. J., & Brakefield, P. M. (2008). Differences in the selection response of serially repeated color pattern characters: Standing variation, development, and evolution. BMC Evolutionary Biology, 8, 94.

    Article  PubMed  Google Scholar 

  • Baatz, M., & Wagner, G. P. (1997). Adaptive inertia caused by hidden pleiotropic effects. Theoretical Population Biology, 51, 49–66.

    Article  Google Scholar 

  • Berg, R. (1960). The ecological significance of correlation pleiades. Evolution, 17, 171–180.

    Article  Google Scholar 

  • Bradshaw, W. E., Haggerty, B. P., & Holzapfel, C. M. (2005). Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics, 169(1), 485–488.

    Article  PubMed  Google Scholar 

  • Brem, R. B., & Kruglyak, L. (2005). The landscape of genetic complexity across 5, 700 gene expression traits in yeast. Proceedings of National Academic of Science USA, 102(5), 1572–1577.

    Article  CAS  Google Scholar 

  • Brem, R. B., Yvert, G., Clinton, R., & Kruglyak, L. (2002). Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568), 752–755.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, J., & Cummings, L. (1972). The Hadamard maximum determinant problem. American Mathematical Monthly, 79, 626–630.

    Article  Google Scholar 

  • Burger, R. (2000). The mathematical theory of selection, recombination and mutation. Chichester: Wiley.

    Google Scholar 

  • Burger, R., & Hofbauer, J. (1994). Mutation load and mutation-selection-balance in quantitative genetic traits. Journal of Mathematical Biology, 32(3), 193–218.

    Article  PubMed  CAS  Google Scholar 

  • Carter, A. J. R., Hermisson, J., & Hansen, T. F. (2005). The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology, 68(3), 179–196.

    Article  PubMed  Google Scholar 

  • Charlesworth, B. (1990). Mutation-selection balance and the evolutionary advantage of sex and recombination. Genetical Research, 55(3), 199–221.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110(2), 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 302(5), 424–435.

    PubMed  Google Scholar 

  • Cheverud, J. M., Vaughn, T. T., Pletscher, L. S., Peripato, A. C., Adams, E. S., Erikson, C. F., et al. (2001). Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mammalian Genome, 12(1), 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Chevin, L. M., Martin, G., & Lenormand, T. (2010). Fisher’s model and the genomics of adaptation: Restricted pleiotropy, heterogenous mutation, and parallel evolution. Evolution, 64(11), 3213–3231.

    Article  PubMed  Google Scholar 

  • Delph, L. F., Steven, J. C., Anderson, I. A., Herlihy, C. R. & Brodie, E. D. III. (2011). Elmination of a genetic correlation between the sexes via artificial correlational selection. Evolution, doi:10.1111/j.1558-5646.2011.01350.x

  • Draghi, J., & Wagner, G. P. (2008). Evolution of evolvability in a developmental model. Evolution, 62(2), 301–315.

    Article  PubMed  Google Scholar 

  • Edwards, C. E., & Weinig, C. (2011). The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings. Heredity, 106, 661–667.

    Article  PubMed  CAS  Google Scholar 

  • Ehlich, H. (1964). Determinantenabschätzungen für binäre Matrizen. Math. Z., 83, 123–132.

    Google Scholar 

  • Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S. & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 296(1):58–79.

    Google Scholar 

  • Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., et al. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews. Genetics, 11(6), 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Fierst, J. L. (2011). Sexual dimorphism increases evolvability in a genetic regulatory network. Evolutionary Biology, 38(1), 52–67.

    Article  Google Scholar 

  • Fisher, R. A. (1958). The genetical theory of natural selection. New York: Dover.

    Google Scholar 

  • Gromko, M. H. (1995). Unpredictability of correlated response to selection: Pleiotropy and sampling interact. Evolution, 49(4), 685–693.

    Article  Google Scholar 

  • Gu, X. (2007). Evolutionary framework for protein sequence evolution and gene pleiotropy. Genetics, 175(4), 1813–1822.

    Article  PubMed  CAS  Google Scholar 

  • Haldane, J. B. S. (1937). The effect of variation on fitness. American Naturalist, 71, 337–349.

    Article  Google Scholar 

  • Hallgrimsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355–376.

    Article  Google Scholar 

  • Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69(2–3), 83–94.

    Article  PubMed  Google Scholar 

  • Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology, Evolution, and Systematics, 37, 123–157.

    Article  Google Scholar 

  • Hansen, T. F. (2011). Epigenetics: Adaptation or contingency? In: B. Hallgrimsson, & B. K. Hall, (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution. Berkeley: University of California Press, pp. 357–376.

  • Hansen, T. F., Alvarez-Castro, J. M., Carter, A. J. R., Hermisson, J., & Wagner, G. P. (2006). Evolution of genetic architecture under directional selection. Evolution, 60, 1523–1536.

    PubMed  Google Scholar 

  • Hansen, T. F., Armbruster, W. S., Carlson, M. L., & Pelabon, C. (2003a). Evolvability and genetic constraint in Dalechampia blossoms: Genetic correlations and conditional evolvability. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 296(1), 23–39.

    PubMed  Google Scholar 

  • Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21(5), 1201–1219.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. F., Pelabon, C., Armbruster, W. S., & Carlson, M. L. (2003b). Evolvability and genetic constraint in Dalechampia blossoms: Components of variance and measures of evolvability. Journal of Evolutionary Biology, 16(4), 754–766.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., & Wagner, G. P. (2001). Modeling genetic architecture: A multilinear theory of gene interaction. Theoretical Population Biology, 59(1), 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, D. L., & Taubes, C. H. (1998). Towards a theory of evolutionary adaptation. Genetica, 102(103), 525–533.

    Article  PubMed  Google Scholar 

  • Hermisson, J., Hansen, T. F., & Wagner, G. P. (2003). Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. American Naturalist, 161(5), 708–734.

    Article  PubMed  Google Scholar 

  • Hermisson, J., & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics, 168, 2271–2284.

    Article  PubMed  Google Scholar 

  • Hine, E., & Blows, M. W. (2006). Determining the effective dimensionality of the genetic variance-covariance matrix. Genetics, 173(2), 1135–1144.

    Article  PubMed  CAS  Google Scholar 

  • Hlusko, L. J., Sage, R. D., & Mahaney, M. C. (2011). Modularity in the mammalian dentition: Mice and monkeys share a common dental genetic architecture. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 316(1), 21–49.

    Article  PubMed  Google Scholar 

  • Houle, D. (1991). Genetic covariance of fitness correlates: What genetic correlations are made of and why it matters. Evolution, 45(3), 630–648.

    Article  Google Scholar 

  • Jones, A. G., Arnold, S. J., & Burger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution, 61(4), 727–745.

    Article  PubMed  Google Scholar 

  • Juenger, T., Perez–Perez, J. M., Bernal, S., & Micol, J. L. (2005). Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: Evidence for modular genetic architecture. Evolution & Development, 7(3), 259–271.

    Article  CAS  Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kirkpatrick, M. (2009). Patterns of quantitative genetic variation in multiple dimensions. Genetica, 136(2), 271–284.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166(4), 1909–1921.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.

    Article  Google Scholar 

  • Lande, R. (1980). The genetic covariance between characters maintained by pleiotropic mutations. Genetics, 94(1), 203–215.

    PubMed  CAS  Google Scholar 

  • Le Rouzic, A., Alvarez-Castro, J. M., & Carlborg, O. (2008). Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics, 179(3), 1591–1599.

    Article  PubMed  Google Scholar 

  • Lewontin, R. C. (1978). Adaptation. Scientific American, 239(3), 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. (2007a). The evolution of genetic networks by non-adaptive processes. Nature Reviews. Genetics, 8(10), 803–813.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. (2007b). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of National Academic of Science USA, 104(Suppl 1), 8597–8604.

    Google Scholar 

  • Lynch, M. (2007c). The origins of genome architecture. Sinauer.

  • Malmberg, R. L., Held, S., Waits, A., & Mauricio, R. (2005). Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics, 171(4), 2013–2027.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G., & Lenormand, T. (2006). A general multivariate extension of Fisher’s geometrical model and the distribution of mutation fitness effects across species. Evolution, 60(5), 893–907.

    PubMed  Google Scholar 

  • McGuigan, K., & Blows, M. W. (2007). The phenotypic and genetic covariance structure of drosophilid wings. Evolution, 61(4), 902–911.

    Article  PubMed  Google Scholar 

  • Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156(1), 305–311.

    PubMed  CAS  Google Scholar 

  • Mezey, J. G., & Houle, D. (2005). The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution, 59(5), 1027–1038.

    PubMed  Google Scholar 

  • Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology, 36(4), 377–385.

    Article  Google Scholar 

  • Muller, H. J. (1950). Our load of mutations. American Journal of Human Genetics, 2, 111–176.

    PubMed  CAS  Google Scholar 

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • Orr, A. H. (2000). Adaptation and the cost of complexity. Evolution, 54(1), 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Orr, H. A., & Coyne, J. A. (1992). The genetics of adaptation: A reassessment. American Naturalist, 140(5), 725–742.

    Article  PubMed  CAS  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2011a). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of Biological Sciences, 278(1713), 1903–1912.

    Article  Google Scholar 

  • Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62(1), 199–213.

    PubMed  Google Scholar 

  • Pavlicev, M., Le Rouzic, A., Cheverud, J. M., Wagner, G. P., & Hansen, T. F. (2010). Directionality of epistasis in a murine intercross population. Genetics, 185, 1489–1505.

    Article  PubMed  CAS  Google Scholar 

  • Pavlicev, M., Norgard, E. A., Fawcett, G. L., & Cheverud, J. M. (2011b). Evolution of pleiotropy: Epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 316B, 371–385.

    Article  Google Scholar 

  • Proulx, S. R., & Phillips, P. C. (2005). The opportunity for canalization and the evolution of genetic networks. American Naturalist, 165(2), 147–162.

    Article  PubMed  Google Scholar 

  • Riedl, R. J. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Roseman, C., Kenney-Hunt, J. P., & Cheverud, J. M. (2009). Phenotypic integration without modularity: Testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evolutionary Biology, 36(3), 282–291.

    Article  Google Scholar 

  • Salathe, M., Ackermann, M., & Bonhoeffer, S. (2006). The effect of multifunctionality on the rate of evolution in yeast. Molecular Biology and Evolution, 23(4), 721–722.

    Article  PubMed  CAS  Google Scholar 

  • Su, Z., Zeng, Y., & Gu, X. (2010). A preliminary analysis of gene pleiotropy estimated from protein sequences. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 314(2), 115–122.

    Article  PubMed  Google Scholar 

  • Turelli, M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theoretical Population Biology, 25(2), 138–193.

    Article  PubMed  CAS  Google Scholar 

  • Turelli, M. (1985). Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. Genetics, 111(1), 165–195.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1988). The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. Journal of Evolutionary Biology, 1(1), 45–66.

    Article  Google Scholar 

  • Wagner, G. P. (1989). Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics, 122(1), 223–234.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P. (Ed.). (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Google Scholar 

  • Wagner, G. P. (2001). The character concept in evolutionary biology. San Diego: Academic Press.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud, J. M. (2008). Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature, 452(7186), 470–472.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P., & Laubichler, M. D. (2004). Rupert Riedl and the re-synthesis of evolutionary and developmental biology: Body plans and evolvability. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 302(1), 92–102.

    PubMed  Google Scholar 

  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews. Genetics, 8(12), 921–931.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P., & Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nature Reviews. Genetics, 12(3), 204–213.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, B., & Blows, M. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: A geometric view of adaptation. Annual Review of Ecology, Evolution, and Systematics, 40, 41–59.

    Article  Google Scholar 

  • Wang, Z., Liao, B. Y., & Zhang, J. (2010). Genomic patterns of pleiotropy and the evolution of complexity. Proceedings of National Academic of Science USA, 107(42), 18034–18039.

    Article  CAS  Google Scholar 

  • Waxman, D., & Welch, J. (2003). Non-equivalent loci and mutation-selection balance. Theoretical Population Biology, 63(4), 339–345.

    Article  PubMed  Google Scholar 

  • Waxman, D., & Welch, J. J. (2005). Fisher’s microscope and Haldane’s ellipse. American Naturalist, 166(4), 447–457.

    Article  PubMed  CAS  Google Scholar 

  • Welch, J. J., & Waxman, D. (2002). Nonequivalent Loci and the distribution of mutant effects. Genetics, 161(2), 897–904.

    PubMed  CAS  Google Scholar 

  • Welch, J. J., & Waxman, D. (2003). Modularity and the cost of complexity. Evolution, 57(8), 1723–1734.

    PubMed  Google Scholar 

  • West, M. A., Kim, K., Kliebenstein, D. J., van Leeuwen, H., Michelmore, R. W., Doerge, R. W., et al. (2007). Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics, 175(3), 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, J. B., Brodie, E. D., & Wade, M. J. (2000). Epistasis and the evolutionary process. New York: Oxford University Press.

    Google Scholar 

  • Wolf, J. B., Pomp, D., Eisen, E. J., Cheverud, J. M., & Leamy, L. J. (2006). The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice. Evolution & Development, 8(5), 468–476.

    Article  CAS  Google Scholar 

  • Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Zou, L., Sriswasdi, S., Ross, B., Missiuro, P. V., Liu, J., & Ge, H. (2008). Systematic analysis of pleiotropy in C. elegans early embryogenesis. PLoS Computational Biology, 4(2), e1000003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to David Houle, Günter Wagner and Jim Cheverud for numerous discussions and constructive suggestions. Thomas Solvin and Justin Fay commented on the earlier versions of the manuscript. The work was supported by the grant #177857 of the Norwegian Research Council to TFH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Pavlicev.

Appendices

Appendix 1

Here we present the derivation of the GP maps maximizing average conditional evolvability. The two models of pleiotropy are dealt with separately. We also present the maximization of the character conditional evolvability in the character model.

Character Model

Discrete Genetic Effects

In this part, we are concerned with discrete effects of genes, i.e., \( b_{ij} \in \left\{ { - 1,0,1} \right\} \). Let the underlying genes have either a positive, a negative, or no effect on the trait, and let each trait be affected by at least one gene. We term modular loci (column vectors of B) as those affecting only one trait (i.e., (1,0), (−1,0), (0,1) or (0, −1)), synergistic loci as those affecting both traits in the same way ((1,1) or (−1, −1)), and antagonistic loci as those affecting both traits in opposite ways ((1, −1) or (−1,1)).

The squared average conditional evolvability \( \bar{c}^{2} \) for two traits equals the sum of the products of determinants of all minors of B (a consequence of Cauchy-Binet formula). We will denote the 2 × 2 sub-matrices (minors) of B as B i , where \( i \in \left\{ {2, \ldots ,{{n\left( {n - 1} \right)} \mathord{\left/ {\vphantom {{n\left( {n - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \right\} \) and n is the number of genes.

$$ \begin{gathered} \bar{c}^{2} = Det\left[ {\mathbf{BB^{T}} }\right] = Det\left[ {\mathbf{B_1} } \right]Det\left[{\mathbf{B_1^T}} \right] + \cdots + Det\left[{\mathbf{B}}_{{{{n\left( {n - 1} \right)} \mathord{\left/ {\vphantom{{n\left( {n - 1} \right)} 2}} \right. \kern-\nulldelimiterspace}2}}} \right]Det\left[ {\mathbf{B}}_{{{{n\left( {n - 1} \right)}\mathord{\left/ {\vphantom {{n\left( {n - 1} \right)} 2}} \right.\kern-\nulldelimiterspace} 2}}} \right] \\ =\sum\limits_{i}^{{{{n\left( {n - 1} \right)} \mathord{\left/{\vphantom {{n\left( {n - 1} \right)} 2}} \right.\kern-\nulldelimiterspace} 2}}} {\left( {Det\left[ {\mathbf{B}}_{i} \right]} \right)^{2} } . \\ \end{gathered} $$

Following the solution of Hadamard’s maximum determinant problem, the maximum determinant of an m x m matrix with all entries \( a_{ij} \le \left| 1 \right| \) equals \( m^{m/2} \), which is two in the case of a 2 × 2 matrix. It can be furthermore shown (Brenner and Cummings 1972; Ehlich 1964) that if matrix elements are restricted to discrete values (−1, 0, 1), there exist four distinct matrices with the maximum determinant (=2). These are, written by row: {{−1, −1}, {1, −1}}, {{−1, 1}, {−1, −1}}, {{−1, 1}, {1, 1}}, {{1, 1}, {1, −1}}. As we are interested in maximum squared values of the determinant, we also consider the minimum determinant (−2). The sign of the determinant changes by exchanging the rows or columns of a matrix, which results in four more optimal matrices. Note that all of these matrices combine one column vector with synergistic and one column vector with antagonistic effects. Hence, the problem of maximum conditional evolvability of a matrix with more than two vectors reduces to the problem of combining the column vectors of B such that they result in most optimal combination of determinants of submatrices B i . We present the values of the determinants of all four possible sub-matrices in Table 4.

Table 4 Summary of determinants of different types of 2 × 2 submatrices

The solution can be found by considering the general equation for combining the four groups of loci (antagonistic, synergistic, two modular) in different proportions and determining the proportions at which the average conditional evolvability is the highest.

Let n M1 , n M2 , n A , n S be the counts of modular loci along the trait 1, modular loci along the trait 2, antagonistic and synergistic loci, respectively. Let x M1 , x M2 , x A , and x S be their respective proportions in the total number of loci n:

\( x_{M1} = \frac{{n_{M1} }}{n},x_{M2} = \frac{{n_{M2} }}{n},x_{A} = \frac{{n_{A} }}{n},x_{S} = \frac{{n_{S} }}{n} \); so that \( x_{M1} + x_{M2} + x_{A} + x_{S} = 1 \). Then \( \bar{c}^{2} \) can be written as the number of times a particular type of submatrix occurs, times the value of its squared determinant (see Table 4):

$$ \begin{gathered} \bar{c}^{2} = \hfill \\ \left( {\frac{{\left( {nx_{M1} } \right)^{2} - nx_{M1} }}{2}} \right)0^{2} + \left( {\frac{{\left( {nx_{M2} } \right)^{2} - nx_{M2} }}{2}} \right)0^{2} + \left( {\frac{{\left( {nx_{A} } \right)^{2} - nx_{A} }}{2}} \right)0^{2} + \left( {\frac{{\left( {nx_{S} } \right)^{2} - nx_{S} }}{2}} \right)0^{2} \hfill \\ + \left( {n^{2} x_{M1} x_{M2} } \right)1^{2} + \left( {n^{2} x_{M1} x_{A} } \right)1^{2} + \left( {n^{2} x_{M1} x_{S} } \right)1^{2} + \left( {n^{2} x_{M2} x_{A} } \right)1^{2} + \left( {n^{2} x_{M2} x_{S} } \right)1^{2} + \left( {n^{2} x_{S} x_{A} } \right)2^{2} \hfill \\ \end{gathered} $$

where n is a constant and can be neglected. Maximizing the equation above under the constraint \( x_{M1} + x_{M2} + x_{A} + x_{S} = 1 \) yields a single solution \( x_{A} = x_{S} = 0.5 \) and consequently \( x_{M1} = x_{M2} = 0 \). The maximum value of the function \( \bar{c}^{2} \) equals n 2; therefore the maximum average conditional evolvability equals n. This shows that the single combination of loci giving the highest average conditional evolvability is the one in which half of the loci have antagonistic and the other half synergistic effects on the two traits, but none are modular. The average evolvability of such GP map is n, hence \( \max \;\bar{c} = \bar{e} \). Also note that the average unconditional evolvability is at its maximum here, because all vectors attain their maximal length.

Continuous Genetic Effects

Here we show that the above is also the solution to the B matrix of continuous effects. We show that the values of the determinants in the above matrices are the maximal values and no other combination of effects will give higher average conditional evolvability.

Consider the type of submatrices above that yield a non-zero determinant. These are all submatrices combining loci with non-equal effects. With respect to the sign of the effect, we again classify the types of loci as before: modular, synergistic and antagonistic. For each submatrix with a non-zero determinant, involving two different types of loci, we show that the determinant (Det) will decrease, as the elements of the submatrix deviate from the limits of the interval [−1,1] by some amount \( \varepsilon_{i} \), where 0 ≤ \( \varepsilon_{i} \) ≤ 1.

Then for a submatrix combining a modular and an antagonistic vector:

$$ \left| \begin{gathered} \;\;\;0\quad - 1 + \varepsilon_{2} \hfill \\ 1 - \varepsilon_{1} \quad 1 - \varepsilon_{3} \hfill \\ \end{gathered} \right| = 1 - \varepsilon_{1} - \varepsilon_{2} + \varepsilon_{1} \varepsilon_{2} \Rightarrow 0 \le Det \le 1; $$

for a submatrix combining a modular and a synergistic vector:

$$ \left| \begin{gathered} \;\;\;0\;\;\,\quad 1 - \varepsilon_{2} \hfill \\ 1 - \varepsilon_{1} \quad 1 - \varepsilon_{3} \hfill \\ \end{gathered} \right| = \varepsilon_{1} + \varepsilon_{2} - \varepsilon_{1} \varepsilon_{2} - 1 \Rightarrow - 1 \le Det \le 0; $$

for a submatrix combining two modular vectors for different traits:

$$ \left| {\begin{array}{cc} {1 - \varepsilon _{1} } & 0 \\ 0 & {1 - \varepsilon _{3} } \\\end{array}} \right| = \varepsilon _{1} + \varepsilon _{2} - \varepsilon _{1} \varepsilon _{2} - 1 \Rightarrow - 1 \le Det \le 0 $$

and for a submatrix combining an antagonistic and a synergistic vector:

$$ \left| {\begin{array}{cc} {1 - \varepsilon _{1} } & -1+ \varepsilon _{3} \\ -1+ \varepsilon _{2} & {1 - \varepsilon _{4} } \\\end{array}} \right| = 2 - \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{3} - \varepsilon_{4} + \varepsilon_{2} \varepsilon_{3} + \varepsilon_{1} \varepsilon_{4} \Rightarrow 0 \le Det \le 2. $$

Thus, submatrix determinants are maximized when \( b_{ij} \in \left\{ { - 1,0,1} \right\} \), for which the solution has been derived above.

Trait Model

The B matrix in the trait model is characterized by constant vector length irrespective of orientation, thus the effects of loci per trait depend on the angles of these vectors in phenotypic space:

$$ {\mathbf{B}} = \left( {\begin{array}{*{20}c} {\frac{\sin \theta }{{\left| {{\mathbf{b}}_{1} } \right|}}} & {\frac{{\sin \left( {\theta + x} \right)}}{{\left| {{\mathbf{b}}_{2} } \right|}}} \\ {\frac{\cos \theta }{{\left| {{\mathbf{b}}_{1} } \right|}}} & {\frac{{\cos \left( {\theta + x} \right)}}{{\left| {{\mathbf{b}}_{2} } \right|}}} \\ \end{array} } \right), $$

where \( \left| {{\mathbf{b}}_{j} } \right| \) is the length of the substitution-effect vector at jth locus, which we assume in the following to be unit length in all vectors; θ is the angle of the first vector from some reference vector (e.g., trait axis 1), and x is the angle between the two vectors, so that −π < x < π. Average conditional evolvability for a two-gene system is then

$$ \bar{c} = Det\left[ {\mathbf{B}} \right] = \sin \theta \cos \left( {\theta + x} \right) - \cos \theta \sin \left( {\theta + x} \right) = \sin x. $$

The solution for this system is obvious: the average conditional evolvability is maximized when x = ±π/2, and it is irrelevant how the two vectors are oriented with respect to the trait axes (θ cancels out in the equation). It follows that the degree of pleiotropy is irrelevant in this model, as long as the two vectors are orthogonal.

Extending the model to multiple genes, we again use the observation that the squared average conditional evolvability is the sum of the squared determinants of all possible two-gene sub-matrices. In terms of between-vector angles, this means that average conditional evolvability equals the square root of the sum of the squared sinus function of angles between all possible pairs of locus vectors. Note that the initial reference angle θ always cancels out, meaning that the orientation of the genetic effect vectors relative to the phenotypic axes is irrelevant. This also means that the degree of pleiotropy is not the essential criterion for optimization.

Due to rotational invariance in the trait model, we can expect different equally optimal solutions when optimizing \( {{n\left( {n - 1} \right)} \mathord{\left/ {\vphantom {{n\left( {n - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2} \) angles simultaneously. To characterize these solutions we consider that, because in the trait model the length of the effect vector is not affected by its orientation relative to the trait axes, the total genetic variance (evolvability) is constant. In terms of the G matrix this means that the trace of the matrix \( \left( {{\rm trace}\left[ {\mathbf{G}} \right] = \lambda_{1} + \lambda_{2} } \right) \) is constant. For the two-trait system \( \bar{c} = \sqrt {\lambda_{1} \lambda_{2} } \), which is maximized when \( \lambda_{1} = \lambda_{2} = {{{\rm trace}\left[ {\mathbf{G}} \right]} \mathord{\left/ {\vphantom {{{\rm trace}\left[ {\mathbf{G}} \right]} 2}} \right. \kern-\nulldelimiterspace} 2} \), and therefore when the genetic covariance of G equals zero.

Note that the maximum is at \( \max \bar{c} = \frac{{{\rm trace}\left[ {\mathbf{G}} \right]}}{2} = \frac{{G_{11} + G_{22} }}{2} = \bar{e}. \)

Multiple equally optimal solutions for a B matrix fulfill this condition (Fig. 2b). The number of trigonometric variables representing vectors in B precludes defining an exhaustive set of solutions. Given the vectors of equal length, the set of solutions includes e.g., all B matrices in which each vector has an orthogonal counterpart, however the way such pairs of vectors are arranged relative to other pairs is arbitrary. Complete modularity is a special case of this vector distribution, in which all pairs of vectors point into two identical directions, forming two orthogonal bundles. Further distributions of vectors for which \( \bar{c} = \bar{e} \) are those with equally spaced vectors (“Equally-spaced vector arrangement”; Fig. 2b), or equally spaced bundles of vectors, etc.

The condition G 12 = 0 does not specify how the single covariance contributions add up. In general, all solutions where negative and positive covariance of loci cancels out are equally optimal as those where no covariance is generated. In reality the vectors can be of different lengths, contributing differently to (co)variance. The equilibrium is then reached not by the equal numbers of vectors generating positive and negative variance, but by balancing their contributions. Thus, the amount of variance allocated at certain angles is also relevant.

Appendix 2

Here we show that a modular vector arrangement and an equally spaced vector arrangement yield maximal average conditional evolvability in the trait model.

Modular Arrangement

The average conditional evolvability can be calculated for a general model with orthogonal bundles of vectors by grouping the between-vector angles into three groups: between vectors within the bundle 1, between vectors within the bundle 2, and the angles between vectors of the opposite bundles. The sine of angles of the first two groups equal 0, and the sine of the between-group angles all equal 1. Hence:

$$ \bar{c}^{2} = 2\frac{n}{4}\left( {\frac{n}{2} - 1} \right)\sin^{2} 0 + \left( \frac{n}{2} \right)^{2} \sin^{2} \frac{\pi }{2} = \left( \frac{n}{2} \right)^{2} \Rightarrow \bar{c} = \frac{n}{2}. $$

This is the same evolvability for the fully modular GP map as in the character model. Note that all vectors contribute the same amount of variance. In a case of the modular two-trait system \( {n \mathord{\left/ {\vphantom {n 2}} \right. \kern-\nulldelimiterspace} 2} = \bar{e} \).

Equally-Spaced Vector Arrangement

In this case the B matrix has a uniform distribution of vectors around 2π (the angles between neighboring vectors are equal). Let n be the number of vectors (angles), then each angle between neighbor vectors is 2π/n. The squared average conditional evolvability (=the sum of the squared sine between all vector-pairs) is then

$$ \begin{aligned} \bar{c}^{2} & = \left( {n - 1} \right)\sin^{2} \frac{2\pi }{n} + \left( {n - 2} \right)\sin^{2} 2\frac{2\pi }{n} + \cdots + \left( {n - \left( {n - 1} \right)} \right)\sin^{2} \left( {\left( {n - 1} \right)\frac{2\pi }{n}} \right) \\ & = \sum\limits_{j = 1}^{n - 1} {\left( {n - j} \right)\sin^{2} \left( {j\frac{2\pi }{n}} \right)} \\ & = \sum\limits_{j = 1}^{n - 1} {\frac{1}{2}\left( {n - j} \right)\left( {1 - \cos \left( {2j\frac{2\pi }{n}} \right)} \right)} \\ & = \frac{1}{2}\left[ {\frac{{n\left( {n - 1} \right)}}{2} + \frac{n}{2}} \right] \\ & = \frac{{n^{2} }}{4}, \\ \end{aligned} $$

and therefore, \( \bar{c} = {n \mathord{\left/ {\vphantom {n 2}} \right. \kern-\nulldelimiterspace} 2} = \bar{e}. \) The last is true because the B matrix is composed of n columns each with two elements, a sine and a cosine of the same angle α. The sum of their squares is always one, and the average evolvability equals half the sum across n such columns.

Appendix 3

Here we show that the trait and character models of pleiotropy are equivalent at full pleiotropy, i.e., when in a trait model, \( \theta = s\left( {\pi /4} \right) \), so that s \( \in \){1, 2,…,8}).

House-of-Cards Approximation

Considering the contribution of a single locus j to the genetic variance of a character 1. In the character model, the jth B matrix column is \( {\mathbf{b}}_{j} = \left( \begin{gathered} \pm 1 \hfill \\ \pm 1 \hfill \\ \end{gathered} \right), \) contributing the following variance to the character 1: \( G_{11j} = \frac{4u}{{s_{1} + s_{2} }}. \) In the trait model, the corresponding column is \( {\mathbf{b}}_{j} = \left( \begin{gathered} \pm \cos \theta \hfill \\ \pm \sin \theta \hfill \\ \end{gathered} \right), \) contributing the following amount of variance to the character 1: \( G_{11j} = \frac{{4u\cos^{2} \theta }}{{s_{1} \cos^{2} \theta + s_{2} \sin^{2} \theta }} \) (where θ is the angle between the mutational effect vector and the axis of character 1; see Fig. 1).

Gaussian Approximation

In the character model, with locus-vector \( {\mathbf{b}}_{j} = \left( \begin{gathered} \pm 1 \hfill \\ \pm 1 \hfill \\ \end{gathered} \right), \) the variance contribution to the character 1 is \( G_{11j} = \frac{{\sigma_{m} }}{{\sqrt {s_{1} + s_{2} } }}; \) whereas in the trait model of pleiotropy, the locus vector \( {\mathbf{b}}_{j} = \left( \begin{gathered} \pm \cos \theta \hfill \\ \pm \sin \theta \hfill \\ \end{gathered} \right) \) contributes \( G_{11j} = \frac{{\sigma_{m} \cos^{2} \theta }}{{\sqrt {s_{1} \cos^{2} \theta + s_{2} \sin^{2} \theta } }} \) to the variance of the trait 1. These contributions are equivalent when \( \theta = \pi /4 \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlicev, M., Hansen, T.F. Genotype-Phenotype Maps Maximizing Evolvability: Modularity Revisited. Evol Biol 38, 371–389 (2011). https://doi.org/10.1007/s11692-011-9136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9136-5

Keywords

Navigation