Skip to main content
Log in

Is the Evolution of Viviparity Accompanied by a Relative Increase in Maternal Abdomen Size in Lizards?

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Female reptiles with viviparous reproduction should leave space for their eggs that reach the maximum mass and volume in the oviducts. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size, thus allowing viviparous females to increase the amount of space for eggs? To answer this question, we compared morphology and reproductive output between oviparous and viviparous species using three pairs of lizards, which included two Eremias, two Eutropis and two Phrynocephalus species with different reproductive modes. The two lizards in each pair differed morphologically, but were similar in the patterns of sexual dimorphism in abdomen and head sizes and the rates at which reproductive output increased with maternal body and abdomen sizes. Postpartum females were heavier in viviparous species, suggesting that the strategy adopted by females to allocate energy towards competing demands differs between oviparous and viviparous species. Reproductive output was increased in one viviparous species, but decreased in the other two, as compared with congeneric oviparous species. The space requirement for eggs did not differ between oviparous and viviparous females in one species pair, but was greater in viviparous females in the other two pairs greater in relative clutch mass and relative litter mass. In the two Phrynocephalus species, viviparous females produced heavier clutches than did oviparous females not by increasing the relative size of the abdomen, but by being more full of eggs. In none of the three species pairs was the maternal abdomen size greater in the viviparous species after accounting for body size. Our data show that the evolution of viviparity is not accompanied by a relative increase in maternal abdomen size in lizards. Future work could usefully investigate other lineages of lizards to determine whether our results are generalisable to all lizards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews, R. M., & Mathies, T. (2000). Natural history of reptilian development: Constraints on the evolution of viviparity. BioScience, 50, 227–238.

    Article  Google Scholar 

  • Bauwens, D., & Thoen, C. (1981). Escape tactics and vulnerability to predation associated with reproduction in the lizard Lacerta vivipara. The Journal of Animal Ecology, 50, 733–743.

    Article  Google Scholar 

  • Bleu, J., Massot, M., Haussy, C., & Meylan, S. (2012). Experimental litter size reduction reveals costs of gestation and delayed effects on offspring in a viviparous lizard. Proceedings of the Royal Society. Section B, 279, 489–498.

    Article  Google Scholar 

  • Braña, F. (1996). Sexual dimorphism in lacertid lizards: Male head increase vs female abdomen increase? Oikos, 75, 511–523.

    Article  Google Scholar 

  • Bulté, G., Irschick, D. J., & Blouin-Demerset, G. (2008). The reproductive role hypothesis explains trophic morphology dimorphism in the northern map turtle. Functional Ecology, 22, 824–830.

    Article  Google Scholar 

  • Congdon, J. D., Dunham, A. E., & Tinkle, D. W. (1982). Energy budgets and life histories of reptiles. In C. Gans (Ed.), Biology of reptilia (Vol. 13, pp. 233–271). New York: Academic Press.

    Google Scholar 

  • Cox, R. M., Skelly, S. L., & John-Alder, H. B. (2003). A comparative test of adaptive hypothesis for sexual size dimorphism in lizards. Evolution, 57, 1653–1669.

    PubMed  Google Scholar 

  • Dufaure, J. P., & Hubert, J. (1961). Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Archives D’anatomie Microscopique et de Morphologie Expérimentale, 50, 309–328.

    Google Scholar 

  • Goodman, B. A., Hudson, S. C., Isaac, J. L., & Schwarzkopf, L. (2009). The evolution of body shape in response to habitat: Is reproductive output reduced in flat lizards? Evolution, 63, 1279–1291.

    Article  PubMed  Google Scholar 

  • Griffith, H. (2009). Body elongation and decreased reproductive output within a restricted clade of lizards (Reptilia: Scincidae). Journal of Zoology, 233, 541–550.

    Article  Google Scholar 

  • Hirshfield, M. F., & Tinkle, T. W. (1975). Natural selection and the evolution of reproductive effort. Proceedings of the National Academy of Sciences of the United States of America, 72, 2227–2231.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Q. Y. (1998). Mabuya fitzinger, 1826. In E. M. Zhao, K. T. Zhao, & K. Y. Zhou (Eds.), Fauna Sinica, Reptilia (Squamata, Lacertilia) (Vol. 2, pp. 304–309). Beijing: Science Press.

    Google Scholar 

  • Huang, W. S. (2006). Ecological characteristics of the skink, Mabuya longicaudata, on a tropical East Asian island. Copeia, 2006, 293–300.

    Article  Google Scholar 

  • Huyghe, K., Vanhooydonck, B., Scheers, H., Molina-Borja, M., & Van Damme, R. (2005). Morphology, performance and fighting capacity in male lizards, Gallotia galloti. Functional Ecology, 19, 800–807.

    Article  Google Scholar 

  • Isaac, J. L. (2005). Potential causes and life history consequences of sexual size dimorphism in mammals. Mammal Review, 35, 101–115.

    Article  Google Scholar 

  • Ji, X., & Du, W. G. (2000). Sexual dimorphism in body size and head size and female reproduction in a viviparous skink, Sphenomorphus indicus. Zoology Research, 21, 349–354.

    Google Scholar 

  • Ji, X., Lin, L. H., Lin, C. X., Qiu, Q. B., & Du, Y. (2006). Sexual dimorphism and female reproduction in the many-lined sun skink (Mabuya multifasciata) from China. Journal of Herpetology, 40, 353–359.

    Article  Google Scholar 

  • Ji, X., Qiu, Q. B., & Diong, C. H. (2002). Influence of incubation temperature on hatching success, embryonic use of energy, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae). Journal of Experimental Zoology, 292, 649–659.

    Article  PubMed  Google Scholar 

  • Ji, X., & Zhang, C. H. (2001). Effects of thermal and hydric environments on incubating eggs, hatching success, and hatchling traits in the Chinese skink (Eumeces chinensis). Acta Zoologica Sinica, 47, 250–259.

    Google Scholar 

  • Kaplan, R. H., & Salthe, S. N. (1979). The allometry of reproduction: An empirical view in salamanders. American Naturalist, 113, 671–689.

    Article  Google Scholar 

  • Kratochvíl, L., Fokt, M., Rehák, I., & Frynta, D. (2003). Misinterpretation of character scaling: A tale of sexual dimorphism in body shape of common lizards. Canadian Journal of Zoology, 81, 1112–1117.

    Article  Google Scholar 

  • Kratochvíl, L., & Frynta, D. (2002). Body size, male combat and the evolution of sexual dimorphism in eublepharid geckos (Squamata: Eublepharidae). Biological Journal of the Linnean Society, 76, 303–314.

    Article  Google Scholar 

  • Kratochvíl, L., & Kubička, L. (2007). Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Functional Ecology, 21, 171–177.

    Article  Google Scholar 

  • Kubička, L., & Kratochvíl, L. (2009). First growth, then breed and finally get fat: Hierachical allocation to life-history traits in a lizard with invariant clutch size. Functional Ecology, 23, 595–601.

    Article  Google Scholar 

  • Lappin, A. K., & Husak, J. F. (2005). Weapon performance, not size, determines mating success and potential reproductive output in the collard lizard (Crotaphytus collaris). American Naturalist, 166, 426–436.

    Article  PubMed  Google Scholar 

  • Li, H. (2009). The evolution of reptilian viviparity and its adaptive significance using lizards as the model systems. Ph.D. Dissertation, Nanjing Normal University, Nanjing, China.

  • Li, H., Ji, X., Qu, Y. F., Gao, J. F., & Zhang, L. (2006). Sexual dimorphism and female reproduction in the multi-ocellated racerunner, Eremias multiocellata (Lacertidae). Acta Zoologica Sinica, 52, 250–255.

    Google Scholar 

  • Li, H., Qu, Y. F., Ding, G. H., & Ji, X. (2011). Life-history variation with respect to the experienced thermal environments in a lizard, Eremias multiocellata (Lacertidae). Zoological Science, 28, 332–338.

    Article  PubMed  Google Scholar 

  • Li, H., Qu, Y. F., Hu, R. B., & Ji, X. (2009). Evolution of viviparity in cold-climate lizards: Testing the maternal manipulation hypothesis. Evolutionary Ecology, 23, 777–790.

    Article  Google Scholar 

  • Lin, C. X., Zhang, L., & Ji, X. (2008). Influence of pregnancy on locomotor performances of the skink, Mabuya multifasciata: Why do females shift thermal preferences when pregnant? Zoology, 111, 188–195.

    Article  PubMed  Google Scholar 

  • Liu, H. X. (2006). Geographic patterns of variation in life-history traits in the Mongolian racerunner, Eremias argus. Master Thesis, Nanjing Normal University, Nanjing, China.

  • Lourdais, O., Shine, R., Bonnet, X., & Brichoux, F. (2006). Sex differences in body composition, performance and behaviour in the Columbian rainbow boa (Epicrates cenchria maurus, Boidae). Journal of Zoology, 269, 175–182.

    Google Scholar 

  • Lucas, A. (1996). Bioenergetics of aquatic animals. London: Taylor and Francis Ltd.

    Google Scholar 

  • Luo, L. G., Ding, G. H., & Ji, X. (2010). Income breeding and temperature-induced plasticity in reproductive traits in lizards. Journal of Experimental Biology, 213, 2073–2078.

    Article  PubMed  Google Scholar 

  • McNab, B. K. (2002). The physiological ecology of vertebrates: A view from energetics (Vol. 1). Cornell: Comstock.

    Google Scholar 

  • Miles, D. B., Sinervo, B., & Frankino, W. A. (2000). Reproductive burden, locomotor performance, and the cost of reproduction in free ranging lizards. Evolution, 54, 1386–1395.

    PubMed  CAS  Google Scholar 

  • Olsson, M., Shine, R., Wapstra, E., Ujvari, B., & Madsen, T. (2002a). Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56, 1538–1542.

    PubMed  Google Scholar 

  • Olsson, M., Wapstra, E., & Olofsson, C. (2002b). Offspring size-number strategies: Experimental manipulation of offspring size in a viviparous lizard (Lacerta vivipara). Functional Ecology, 16, 135–140.

    Article  Google Scholar 

  • Pigliucci, M. (2003). Phenotypic integration: Studying the ecology and evolution of complex phenotypes. Ecological Letters, 6, 265–272.

    Article  Google Scholar 

  • Pincheira-Donoso, D., & Tregenza, T. (2011). Fecundity selection and the evolution of reproductive output and sex-specific body size in the Liolaemus lizard adaptive radiation. Evolutionary Biology, 38, 197–207.

    Article  Google Scholar 

  • Qu, Y. F., Gao, J. F., Mao, L. X., & Ji, X. (2011a). Sexual dimorphism and female reproduction in two sympatric toad-headed lizards, Phrynocephalus frontalis and P. versicolor (Agamidae). Animal Biology, 61, 139–151.

    Article  Google Scholar 

  • Qu, Y. F., Li, H., Gao, J. F., & Ji, X. (2011b). Embryonic thermosensitivity and hatchling morphology differ between two coexisting lizards. Acta Oecologica, 37, 375–380.

    Article  Google Scholar 

  • Qualls, C. P., & Andrews, R. M. (1999). Maternal body volume constrains water uptake by lizard eggs in utero. Functional Ecology, 13, 845–851.

    Article  Google Scholar 

  • Qualls, C. P., & Shine, R. (1995). Maternal body-volume as a constraint on reproductive output in lizards: Evidence from the evolution of viviparity. Oecologia, 103, 73–78.

    Article  Google Scholar 

  • Roff, D. A. (2002). Life history evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Shadrix, C. A., Crotzer, D. R., McKinney, S. L., & Stewart, J. R. (1994). Embryonic growth and calcium mobilization in oviposited eggs of the scincid lizard, Eumeces fasciatus. Copeia, 1994, 493–498.

    Article  Google Scholar 

  • Shine, R. (1983). Reptilian reproductive modes: The oviparity-viviparity continuum. Herpetologica, 39, 1–8.

    Google Scholar 

  • Shine, R. (1992). Relative clutch mass and body shape in lizards and snakes: Is reproductive investment constrained or optimized? Evolution, 46, 828–833.

    Article  Google Scholar 

  • Shine, R. (2003). Locomotor speeds of gravid lizards: Placing ‘costs of reproduction’ within an ecological context. Functional Ecology, 17, 526–533.

    Article  Google Scholar 

  • Shine, R. (2005). Life-history evolution in reptiles. Annual Review of Ecology, Evolution, and Systematics, 36, 23–46.

    Article  Google Scholar 

  • Sinervo, B., & Licht, P. (1991). Proximate constraints on the evolution of egg size, number, and total clutch mass in lizards. Science, 252, 1300–1302.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Sun, Y. Y. (2009). Life-history traits, thermal dependence of offspring phenotype and costs of tail loss in the many-lined sun skink, Mabuya multifasciata. Master thesis, Hangzhou Normal University, Hangzhou, China.

  • Vitt, L. J., & Congdon, J. D. (1978). Body shape, reproductive effort and relative clutch mass in lizards: Resolution of a paradox. American Naturalist, 112, 595–608.

    Article  Google Scholar 

  • Vleck, D. (1991). Water economy and solute regulation of reptilian and avian embryos. In D. C. Deeming & M. W. J. Ferguson (Eds.), Egg incubation: Its effects on embryonic development in reptiles and birds (pp. 245–259). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Wang, Z. (2011). Adapting to extreme climate: The evolution of viviparity in Phrynocephalus lizards. Ph.D. Dissertation, Nanjing Normal University, Nanjing, China.

  • Wang, Z., Xia, Y., & Ji, X. (2011). Clutch frequency affects the offspring size-number trade-off in lizards. PLoS One, 6, e16585.

    Article  PubMed  CAS  Google Scholar 

  • Wickman, P. O., & Karlsson, B. (1989). Abdomen size, body size and the reproductive effort of insects. Oikos, 56, 209–214.

    Article  Google Scholar 

  • Williams, G. C. (1966). Natural selection, the costs of reproduction and a refinement of Lack’s principal. American Naturalist, 100, 687–690.

    Article  Google Scholar 

  • Zhang, Y. P., & Ji, X. (2004). Sexual dimorphism in head size and food habits in the blue-tailed skink Eumeces elegans. Acta Zoologica Sinica, 50, 745–752.

    Google Scholar 

  • Zhang, X. D., Ji, X., Luo, L. G., Gao, J. F., & Zhang, L. (2005). Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii. Acta Zoologica Sinica, 51, 1006–1012.

    Google Scholar 

  • Zhao, K. T. (1998a). Phrynocephalus Kaup, 1825. In E. M. Zhao, K. T. Zhao, & K. Y. Zhou (Eds.), Fauna Sinica, Reptilia (Squamata, Lacertilia) (Vol. 2, pp. 151–192). Beijing: Science Press.

    Google Scholar 

  • Zhao, K. T. (1998b). Eremias Wiegmann, 1834. In E. M. Zhao, K. T. Zhao, & K. Y. Zhou (Eds.), Fauna Sinica, Reptilia (Squamata, Lacertilia) (Vol. 2, pp. 220–242). Beijing: Science Press.

    Google Scholar 

Download references

Acknowledgements

The work was carried out in compliance with the current laws on animal welfare and research in China, and was supported by grants from the Natural Science Foundation of China (30670281, 31060064 and 31071910), Innovative Team Project of Nanjing Normal University (0319PM0902) and Priority Academic Program Development of Jiangsu Higher Education Institutions (CXLX11_0885 and 2010BS0040) to Ji’s group. We thank Hong Li, Zheng-Cheng Li, Hong-Liang Lu, Li Ma, Qing-Bo Qiu, Zheng Wang, Yan-Qing Wu, Hui-Qin Yin and Zong-Shi Zhou for help during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YY., Du, Y., Yang, J. et al. Is the Evolution of Viviparity Accompanied by a Relative Increase in Maternal Abdomen Size in Lizards?. Evol Biol 39, 388–399 (2012). https://doi.org/10.1007/s11692-012-9166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9166-7

Keywords

Navigation