Skip to main content
Log in

Carnivore body size: Ecological and taxonomic correlates

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Variation in body size (weight) is examined across the order Carnivora in relation to taxonomy (phylogeny), latitude, habitat, zonation, activity cycle, diet, prey size, and prey diversity. Significant differences in body weight are observed with respect to family membership. Some of these differences may be explained by phylogenetic history and/or dietary effects. Body weight is not correlated with habitat, zonation, activity cycle or latitudinal gradients. Significant differences in body weight are found among insectivorous, herbivorous and carnivorous species, and some of these differences may relate to energetic constraints. Among predatory carnivores, prey size and diversity increases with body weight. The adaptive significance, both intra- and inter-specifically, of prey characteristics (size, availability, diversity) and carnivore body weight qualities (strength, endurance, hunting technique) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett RJ (1977) Bergmann's rule and variation in structures related to feeding in the gray squirrel. Evolution 31:538–545

    Google Scholar 

  • Bekoff M (ed) (1978) Coyotes: their biology, behavior and management. New York, Academic Press

    Google Scholar 

  • Bekoff M (1982); Coyote. In: J chapman, G Feldhamer (eds). Wild Mammals of North America. Baltimore, Johns Hopkins, pp 447–459

    Google Scholar 

  • Bekoff M, Daniels TJ, Gittleman JL (1984) Life history patterns and the comparative social ecology of carnivores. Ann Rev Ecol Syst 15:191–232

    Google Scholar 

  • Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien 3:595–708

    Google Scholar 

  • Bertram BCR (1978) Living in groups: predators and prey. In: JR Krebs, NB Davies (eds). Behavioural ecology. Blackwell, Oxford, pp 64–96

    Google Scholar 

  • Bertram BCR (1979) Serengeti predators and their social systems. In: ARE Sinclair, M Norton-Griffiths (eds). Serengeti: dynamics of an ecosystem. Univ Chicago Press, Chicago, pp 159–179

    Google Scholar 

  • Bourlière F (1975) Mammals small and large: the ecological implications of size. In: F Golley, K Petrusewicz, L Ryszokowski (eds). Small Mammals: their productivity and population dynamics. Cambridge Univ Press, Cambridge, pp 1–8

    Google Scholar 

  • Boyce MS (1979) Seasonality and patterns of natural selection for life histories. Am Nat 114:569–583

    Google Scholar 

  • Brown JH (1975) Geographical ecology of desert rodents. In: M Cody, J Diamond (eds). Ecology and evolution of communities. Harvard Univ Press, Cambridge, pp 315–341

    Google Scholar 

  • Brown JH, Lee AK (1969) Bergmann's rule and climatic adaptation in woodrats (Neotoma). Evolution 23:329–338

    Google Scholar 

  • Calder WA III (1984) Size, function, and life history. Harvard Univ Press, Cambridge

    Google Scholar 

  • Caraco T, Wolf LL (1975) Ecological determinants of group sizes of foraging lions. Am Nat 109:343–352

    Google Scholar 

  • Charles-Dominique P (1975) Nocturnality and diurnality, an ecological interpretation of these two modes of life by an analysis of higher vertebrate fauna in tropical forest ecosystems. In: WP Luckett, F Szalay (eds). Phylogeny of primates. Plenum, New York, pp 477–529

    Google Scholar 

  • Cherry LM, Case CM, Kunkel JG, Wyles JS, Wilson AC (1982) Body shape metrics and organismal evolution. Evolution 36:914–933

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1977) Primate ecology and social organisation. J Zool 183:1–39

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1979) Comparison and adaptation. Proc Roy Soc Lond 205:547–565

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1983) The functional significance of variation in body size among mammals. In: JF Eisenberg, DG Kleiman (eds). Advances in the study of mammalian behavior. Spec Publ Am Soc Mamm, Lawrence, Kansas, pp 532–563

    Google Scholar 

  • Clutton-Brock TH, Harvey PH (1984) Comparative approaches to investigating adaptation. In: JR Krebs, NB Davies (eds). Behavioural ecology, 2nd ed Blackwell, Oxford, pp 7–29

    Google Scholar 

  • Davis S (1977) Variation of the fox,Vulpes vulpes, in the palearctic region today, and in Israel during the late quarternary. J Zool 155:485–497

    Google Scholar 

  • Dorst J, Dandelot P (1969) A field guide to the larger mammals of Africa. Houghton Mifflin, Boston, MA

    Google Scholar 

  • Eisenberg JF (1981) The Mammalian Radiations. Chicago Univ Press, Chicago

    Google Scholar 

  • Eltringham SK (1979) The ecology and conservation of large African mammals. Macmillan, London

    Google Scholar 

  • Estes RG, Goddard J (1967) Prey selection and hunting behavior of the African wild dog. J Wild Mgt 31:52–70

    Google Scholar 

  • Ewer RF (1973) The Carnivores. Cornell Univ Press, Ithaca

    Google Scholar 

  • Fleagle JG (1978) Size distribution of living and fossil primate faunas. Paleobiology 4:67–76

    Google Scholar 

  • Fuentes ER, Jacksié FM (1979) Latitudinal size variation of Chilean foxes: tests of alternative hypotheses. Ecology 60:43–47

    Google Scholar 

  • Gambaryan PP (1974) How animals run: anatomical adaptations. Halsted Press, New York

    Google Scholar 

  • Garland T (1983a) The relation between maximal running speed and body mass in terrestrial mammals. J Zool 199:157–170

    Google Scholar 

  • Garland T (1983b) Scaling the ecological cost of transport to body mass in terrestrial mammals. Am Nat 121:571–587

    Google Scholar 

  • Geist V (1974) On the relationship of social evolution and ecology in ungulates. Am Zool 14:205–220

    Google Scholar 

  • Gittleman JL (1984) The behavioural ecology of carnivores. PhD Thesis, University of Sussex

  • Gittleman JL, Harvey PH (1982) Carnivore home-range size, metabolic needs and ecology. Behav Ecol Sociobiol 10:57–63

    Google Scholar 

  • Gorman ML (1979) Dispersion and foraging of the small Indian mongoose,Herpestes auropunctatus (Carnivora: Viverridae) in the Fijian Islands. J Zool 178:237–246

    Google Scholar 

  • Griffiths D (1980) Fotaging costs and relative prey size. Am Nat 116:743–752

    Google Scholar 

  • Grobler JH (1981) Feeding behaviour of the caracalFelis caracal Schreber 1776 in the Mountain Zebra National Park. S Afr J Zool 16:259–262

    Google Scholar 

  • Hall ER (1981) Mammals of North America. Wiley, New York

    Google Scholar 

  • Harvey PH (1982) On fethinking allometry. J Theor Biol 95:37–41

    Google Scholar 

  • Harvey PH, Mace GM (1982) Comparisons between taxa and adaptive trends: problems of methodology. In: King's College Sociobiology Group (eds), Current problems in sociobiology. Cambridge Univ Press, Cambridge, pp 343–361

    Google Scholar 

  • Henry JD (1980) Fox Hunting. Natural History 89:60–69

    Google Scholar 

  • Herrero S (1978) A comparison of some features of the evolution, ecology and behavior of black and grizzly/brown bears. Carnivore 1:7–17

    Google Scholar 

  • Hespenheide HA (1973) Ecological inferences from morphological data. Annu Rev Ecol Syst 4:213–229

    Google Scholar 

  • hespenheide HA (1975) Prey characteristics and niche width. In: ML Cody, JM Diamond (eds) Ecology and evolution of communities. Harvard Univ Press, Cambridge, pp 158–180

    Google Scholar 

  • Hill AV (1950) The dimensions of animals and their muscular dynamics. Sci Progr 38:209–230

    Google Scholar 

  • Huxley J (1942) Evolution: the modern synthesis. G Allen & Unwin, London

    Google Scholar 

  • Irving L (1957) The usefulness of Scholander's views on adaptive insulation of animals. Evolution 11:257–259

    Google Scholar 

  • James FC (1970) Geographic size variation in birds and its relationship to climate. Ecology 51:365–390

    Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:215–256

    Google Scholar 

  • Jarman PJ, Sinclair ARE (1979) Feeding strategy and the pattern of resource partitioning in ungulates. In: ARE Sinclair, M Norton-Griffiths (eds) Serengeti: dynamics of an ecosystem. Chicago Univ Press, Chicago, pp 130–163

    Google Scholar 

  • Kendeigh SG (1969) Tolerance of cold and Bergmann's rule. Auk 36:18–25

    Google Scholar 

  • Kingdon J (1977) East African mammals. 3a. Carnivores. Academic Press, New York

    Google Scholar 

  • Kleiber M (1961) The fire of life. Wiley, New York

    Google Scholar 

  • Kleiman DG, Eisenberg JF (1973) Comparisons of canid and felid social systems from an evolutionary perspective. Anim Behav 21:637–659

    Google Scholar 

  • Kruuk H (1972) The Spotted Hyena: a study of predation and social behavior. Chicago Univ Press, Chicago

    Google Scholar 

  • Kruuk H (1975) Functional aspects of social hunting in carnivores. In: G Baerends, C Beer, A Manning (eds). Function and evolution of behavior. Oxford Univ Press, Oxford, pp 119–141

    Google Scholar 

  • Kruuk H (1978) Foraging and spatial organisation of the European badger,Meles meles. Behav Ecol Sociobiol 4:75–89

    Google Scholar 

  • Kurtén B (1971) The age of mammals. Columbia Univ Press, New York

    Google Scholar 

  • Lamprecht J (1978) On diet, foraging behaviour and interspecific food competition of jackals in the Serengeti National Park. Z Sauget 43:210–233

    Google Scholar 

  • Le Boeuf BJ (1978) Social behavior in some marine and terrestrial carnivores. In: ES Reese, FJ Lighter (eds). Contrasts in behavior. Wiley, New York, pp 251–279

    Google Scholar 

  • Lekagul B, McNeely J (1977) Mammals of Thailand. Karusapa Press, Bangkok

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper & Row, New York

    Google Scholar 

  • McCord CM, Cardoza JE (1982) Bobeat and lynx. In: JA Chapman, GA Feldhamer (eds). Wild Mammals of North America. Johns Hopkins Univ Press, Baltimore, pp 728–766

    Google Scholar 

  • McNab BK (1971) On the ecological significance of Bergmann's rule. Ecology 52:845–854

    Google Scholar 

  • McNab BK (1980) Food habits, energetics, and the population biology of mammals. Am Nat 116:106–124

    Google Scholar 

  • Macdonald DW (1980) The red fox,Vulpes vulpes, as a predator upon earthworms,Lumbricus terrestris. Z Tierpsychol 52:171–200

    Google Scholar 

  • Mace GM (1979) The evolutionary ecology of small mammals. D Phil Thesis, University of Sussex

  • Martin RD (1979) Phylogenetic aspects of prosimian behaviour. In: GA Doyle, RD Martin (eds). The study of prosimian behavior. Academic Press, London, pp 45–77

    Google Scholar 

  • Mathew WD (1930) The phylogeny of dogs. J Mamm 11:117–138

    Google Scholar 

  • Mayr E (1963) Animals, species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mech LD (1970) The wolf. The Natural History Press, New York

    Google Scholar 

  • Moehlman PD (1983) Socioecology of silverbacked and golden jackals (Canis mesomelas andCanis aureus). In: JF Eisenberg, DG Kleiman (eds) Advances in the study of mammalian behavior. Spec Publ Am Soc Mamm, Lawrence, Kansas, pp 423–453

    Google Scholar 

  • Pennycuick CJ (1979) Energy costs of locomotion and the concept of “foraging radius”. In: ARE Sinclair, M Norton-Griffiths (eds) Serengeti: dynamics of an ecosystem. Chicago Univ Press, Chicago, pp 164–184

    Google Scholar 

  • Peters R, Mech LD (1975) Behavioral and intellectual adaptations of selected mammalian predators to the problem of hunting large animals. In: RH Tuttle (ed). Socioecology and psychology of primates. Mouton, The Hague, pp 279–300

    Google Scholar 

  • Powell RA (1982) The fisher. Minnesota Univ Press, Minneapolis

    Google Scholar 

  • Powell RA, Brander RB (1977) Adaptations of fishers and porcupines to their predator-prey system. In: RL Phillips, CJ Jonkel (eds). Proceeding of the 1975 Predator Symposium. Mont For Conserv Exp Stat Publ, Missoula, pp 45–53

    Google Scholar 

  • Pulliam HR, Enders F (1971) The feeding ecology of five sympatric finch species. Ecology 52:557–566

    Google Scholar 

  • Ralls K, Harvey P (1985) Geographic variation in size and sexual dimorphism of North American weasels. Biol J Linn Soc 25:119–167

    Google Scholar 

  • Rood JP (1983) The social system of the dwarf mongoose. In: JF Eisenberg, DG Kleiman (eds). Advances in the study of mammalian behavior. Spec Pub Am Soc Mamm, Lawrence, Kansas, pp 454–488

    Google Scholar 

  • Rood JP, Waser PW (1977) The slender mongoose (Herpestes sanguineus) in the Serengeti. Carnivore 1:54–58

    Google Scholar 

  • Rosenzweig ML (1966) Community structure in sympatric carnivores. J Mamm 47:602–620

    Google Scholar 

  • Rosenzweig ML (1968) The strategy of body size in mammalian carnivores. Am Midl Nat 80:299–315

    Google Scholar 

  • Rowe-Rowe DT (1978) Comparative prey capture and food studies of South African mustelines. Mammalia 42:175–196

    Google Scholar 

  • Rowe-Rowe DT (1983) Black-backed jackal diet in relation to food availability in the Natal Drakensberg. S Afr Wild Res 13:17–23

    Google Scholar 

  • Savage RJG (1977) Evolution in carnivorous mammals. Paleontology 20:237–271

    Google Scholar 

  • Schaller GB (1967) The deer and the tiger. Chicago Univ Press, Chicago

    Google Scholar 

  • Schaller GB (1972) The Serengeti lion. Chicago Univ Press, Chicago

    Google Scholar 

  • Schoener TW (1968) Sizes of feeding territories. Ecology 49:123–141

    Google Scholar 

  • Schoener TW (1969a) Models of optimal size for solitary predators. Am Nat 103:277–313

    Google Scholar 

  • Schoener TW (1969b) Optimal size and specialization in constant and fluctuating environments: an energy-time approach. Brookhaven Symp Biol 22:103–114

    Google Scholar 

  • Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26

    Google Scholar 

  • Searcy WA (1980) Optimum body sizes at different ambient temperatures: an energetics explanation of Bergmann's rule. J Theor Biol 83:579–593

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco, CA

    Google Scholar 

  • Spencer WD, Zielinski WJ (1983) Predatory behavior of pine martens. J Mamm 64:715–717

    Google Scholar 

  • Stanley SM, Van Valkenburgh B, Steneck RS (1983) Coevolution and the fossil record. In: D Futuyma, M Slatkin (eds) Coevolution. Sinauer, Sunderland, MA, pp 328–349

    Google Scholar 

  • Struhsaker TT (1978) Food habits of five monkey species in the Kibale Forest, Uganda. In: DJ Chivers, J Herbert (eds) Advances in primatology. Academic, London, pp 225–248

    Google Scholar 

  • Underwood R (1982) Vigilance behaviour in grazing ungulates. Behaviour 79:81–107

    Google Scholar 

  • Walker EB (1975) Mammals of the world. Johns Hopkins Univ Press, Baltimore

    Google Scholar 

  • Waser P (1977) Feeding, ranging and group size in mangabeyCercocebus albigena. In: TH Clutton-Brock (ed). Primate ecology. Academic Press, London, pp 183–222

    Google Scholar 

  • Wells MC, Bekoff M (1982) Predation by wild coyotes: behavioral and ecological analyses. J Mamm 63:118–127

    Google Scholar 

  • Wilson DS (1975) The adequacy of body size as a niche difference. Am Nat 109:769–784

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gittleman, J.L. Carnivore body size: Ecological and taxonomic correlates. Oecologia 67, 540–554 (1985). https://doi.org/10.1007/BF00790026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00790026

Keywords

Navigation