Skip to main content
Log in

Evolvability and Robustness in Color Displays: Bridging the Gap between Theory and Data

  • Synthesis
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Evolution of diet-derived sexual ornaments—some of the most spectacular and diverse traits in the living world—highlights the gap between modern evolutionary theory and empirical data on the origin and inheritance of complex environment-dependent traits. Specifically, current theory offers little insight into how strong environmental contingency of diet-dependent color biosynthesis and environmental variability in precursor supply can be reconciled with extensive evolutionary elaboration, diversification, and convergence of diet-dependent displays among animal taxa. Moreover, biosynthetic pathways of diet-derived displays combine seemingly irreconcilable robustness, lability, and modularity to facilitate elaboration under variable environmental conditions. Here I show that an ontogenetic decrease in the predictability of an association between organismal and environmental components of color biosynthesis and the corresponding evolutionary transition from short-term epigenetic inheritance of peripheral biosynthetic components to genetic inheritance of the most reliable upstream components link the causes of developmental variation with the causes of inheritance in diet-derived displays. Using carotenoid-based colors as an empirical model, I outline general principles of a testable evolutionary framework of diversification and functional robustness of diet-derived displays, and suggest that such a framework provides insight into the foundational question of evolutionary biology—how to connect causes of within-generation developmental variation with causes of among-generation and among-taxa variation and thus with causes of evolution?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharoni, A., Gaidukov, L., Khersonsky, O., McQ Gould, S., Roodveldt, C., & Tawfik, D. S. (2005). The ‘evolvability’ of promiscuous protein functions. Nature Genetics, 37, 73–76.

    PubMed  CAS  Google Scholar 

  • Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84, 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, F. H., Wintrode, P. C., Miaazaki, K., & Gershenson, A. (2001). How enzymes adapt: Lessons from directed evolution. Trends in Biochemical Sciences, 26, 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Baatz, M., & Wagner, G. P. (1997). Adaptive inertia caused by hidden pleiotropic effects. Theoretical Population Biology, 51, 49–66.

    Article  Google Scholar 

  • Badyaev, A. V. (2004a). Developmental perspective on the evolution of sexual displays. Evolutionary Ecology Research, 6, 975–991.

    Google Scholar 

  • Badyaev, A. V. (2004b). Integration and modularity in the evolution of sexual ornaments: An overlooked perspective. In M. Pigliucci, & K. Preston (Eds.), Phenotypic integration: The evolutionary biology of complex phenotypes (pp. 50–79). Oxford: Oxford University Press.

  • Badyaev, A. V. (2005a). Colorful phenotypes of colorless genotypes: Towards a new evolutionary synthesis of animal color displays. In G. E. Hill, & K. J. McGraw (Eds.), Bird coloration: Function and evolution (pp. 349–379). Cambridge: Harvard Univ. Press.

    Google Scholar 

  • Badyaev, A. V. (2005b). Stress-induced variation in evolution: from behavioral plasticity to genetic assimilation. Proceedings of Royal Society London: Biological Sciences, 272, 877–886.

    Article  Google Scholar 

  • Badyaev, A. V., & Duckworth, R. A. (2003). Context-dependent sexual advertisement: Plasticity in development of sexual ornamentation throughout the lifetime of a passerine bird. Journal of Evolutionary Biology, 16, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  • Badyaev, A. V., & Foresman, K. R. (2004). Evolution of morphological integration: I. Functional units channel stress-induced variation in shrew mandibles. American Naturalist, 163, 868–879.

    Article  PubMed  Google Scholar 

  • Badyaev, A. V., & Hill, G. E. (2003). Avian sexual dichromatism in relation to ecology and phylogeny. Annual Review of Ecology and Systematics, 34, 27–49.

    Article  Google Scholar 

  • Badyaev, A. V., & Landeen, E. A. (2007). Developmental evolution of sexual ornamentation: Model and a test of feather growth and pigmentation. Integrative and Comparative Biology (in press).

  • Badyaev, A. V., & Qvarnström, A. (2002). Putting sexual traits into the context of an organism: A life-history perspective in studies of sexual selection. Auk, 119, 301–310.

    Article  Google Scholar 

  • Badyaev, A. V., & Vleck, C. M. (2007). Context-dependent ontogeny of sexual ornamentation: Implications for a trade-off between current and future breeding efforts. Journal of Evolutionary Biology (in press).

  • Badyaev, A. V., & Young, R. L. (2004). Complexity and integration in sexual ornamentation: An example with carotenoid and melanin plumage pigmentation. Journal of Evolutionary Biology 17, 1317–1327.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. C., & Baker, E. M. (1990). Reproductive behavior of female buntings: Isolating mechanisms in a hybridizing pair of species. Evolution, 44, 332–338.

    Article  Google Scholar 

  • Bitgood, J. J., & Somes, R. G. J. (2003). Linkage relationships and gene mapping. In: R. D. Crawford (Ed.), Poultry breeding and genetics (pp. 469–496). Amsterdam: Elsevier.

  • Blanco, G., Frias, O., Garrido-Fernandez, J., & Hornero-Mendez, D. (2005). Environmental-induced acquisition of nuptial plumage expression: A role of denaturation of feather carotenoproteins? Proceedings of the Royal Society B, 272, 1893–1900.

    Article  PubMed  CAS  Google Scholar 

  • Bleiweiss, R. (2004). Novel chromatic and structural biomarkers of diet in carotenoid-bearing plumage. Proceedings of the Royal Society B, 271, 2327–2335.

    Article  PubMed  Google Scholar 

  • Blount, J. D., Metcalfe, N. B., Birkhead, T. R., & Surai, P. F. (2003). Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science, 300, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Britton, G. (1998). Overview of carotenoid biosynthesis. In G. Britton, H. Pfander, & S. Liaaen-Jensen (Eds.), Carotenoids: Biosynthesis and metabolism (pp. 13–147). Basel: Birkhäuser.

    Google Scholar 

  • Brockmann, H., Völker, O. (1934). Der Gelbe Federfarbstoff des Kanarievogels (Serius canaria) und das Volkommen von Carotinoided bei Vögeln. Hoppe-Zeyler’s Zeitschrift für, 224, V.

    Google Scholar 

  • Brush, A. H. (1967). Pigmentation in the scarlet tanager, Piranga olivacea. Condor, 69, 549–559.

    Article  Google Scholar 

  • Brush, A. H. (1978). Avian pigmentation. In A. H. Brush (Ed.), Chemical zoology (pp. 141–161). New York: Academic Press.

    Google Scholar 

  • Brush, A. H. (1990). Metabolism of carotenoid pigments in birds. FASEB, 4, 2969–2977.

    CAS  Google Scholar 

  • Caropale, L. H. (1999). Chance favors the prepared genome. Annals New York Academy of Sciences, 870, 1–21.

    Article  Google Scholar 

  • Carroll, S. B. (2005). Evolution at two levels: On genes and form. PLoS Biology, 3, e245.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2001). From DNA to diversity molecular genetics and the evolution of animal design. Blackwell Science, p. 162.

  • Cate, C. T., & Bateson, P. (1988). Sexual selection: The evolution of conspicuous characteristics in birds by means of imprinting. Evolution, 42, 1355–1358.

    Article  Google Scholar 

  • Chetverikov, S. S. (1926). On certain aspects of the evolutionary process from the standpoint of modern genetics. Journal of Experimental Biology Series A, 2, 1–40.

    Google Scholar 

  • Craig, J. K., & Foote, C. J. (2001). Countergradient variation and secondary sexual color: Phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromus morphs of sockeye salmon. Evolution, 55, 380–391.

    PubMed  CAS  Google Scholar 

  • Cushing, J. E. Jr. (1941). Non-genetic mating preferences as a factor in evolution. Condor, 43, 233–236.

    Article  Google Scholar 

  • Davidson, E. H. (2006). The regulatory genome: Gene regulatory networks in development and evolution. Academic Press, p. 304.

  • Desselberger, H. (1930). Ueber das Lipochrom der Vogelfeder. Journal fur Ornithologie, 78, 328–376.

    Article  Google Scholar 

  • Firn, R. D., & Jones, C. G. (1996). An explanation of secondary product “redundancy”. In J. T. Romeo, J. A. Saunders, & P. Barbosa (Eds.), Phytochemical diversity and redundancy in ecological interactions (pp. 295–312). New York: Plenum Press.

    Google Scholar 

  • Fitze, P. S., Tschirren, B., & Richner, H. (2003). Carotenoid-based colour expression is determined early in nestling life. Oecologia, 137, 148–152.

    Article  PubMed  Google Scholar 

  • Fox, D. L., Smith, V. E., & Wolfson, A. A. (1969). Carotenoid selectivity in blood and feathers of lesser (Africa) Chilean and Greater (European) flamingos. Comparative Biochemistry and Physiology, 23, 225–232.

    Article  Google Scholar 

  • Fraser, P. D., Shimada, H., & Misawa, N. (1998). Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct in vitro assay. European Journal of Biochemistry, 252, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. F. (2001). Ecological developmental biology: Developmental biology meets the real world. Developmental Biology, 233, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Bioscience, 30, 64–74.

    Google Scholar 

  • Gluckman, P. D., Hanson, M. A., & Beedle, A. S. (2007). Early life events and their consequences for later disease: A life history and evolutionary perspective. American Journal of Physical Anthropology, 19, 1–19.

    Google Scholar 

  • Goodwin, T. W. (1952). Comparative biochemistry of carotenoids. London: Chapman and Hall.

    Google Scholar 

  • Griswold, C. K. (2006). Pleiotropic mutation, modularity and evolvability. Evolution and Development, 8, 81–93.

    Article  PubMed  Google Scholar 

  • Hadfield, J. D., & Owens, I. P. F. (2006). Strong environmental determination of a carotenoid-based plumage trait is not mediated by carotenoid availability. Journal of Evolutionary Biology, 19, 1104–1114.

    Article  PubMed  CAS  Google Scholar 

  • Hill, G. E. (2003). A red bird in a brown bag: The function and evolution of colorful plumage in the house finch. Oxford Ornithology Series.

  • Hill, G. E., & Benkman, C. W. (1995). Exceptional response to dietary carotenoid supplementation by female Red Crossbills. Wilson Bulletin, 107, 620–621.

    Google Scholar 

  • Hoekstra, H. E. (2006). Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 97, 222–234.

    Article  PubMed  CAS  Google Scholar 

  • Hudon, J. (1991). Unusual carotenoid use by western tanager (Piranga ludoviviana) and its evolutionary implications. Canadian Journal of Zoology, 69, 2311–2320.

    CAS  Google Scholar 

  • Hudon, J., & Brush, A. H. (1989). Probably dietary basis of a color variant of the cedar waxwing. Journal of Field Ornithology, 60, 361–368.

    Google Scholar 

  • Huxley, J. S. (1942). Evolution: The modern synthesis. Allen and Unwin.

  • Inouye, C. Y., Hill, G. E., Stradi, R. D., & Montgomerie, R. (2001). Carotenoid pigments in male house finch plumage in relation to age, subspecies, and ornamental coloration. Auk, 118, 900–915.

    Article  Google Scholar 

  • Jablonka, E. (2001). The systems of inheritance. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 99–116). Cambridge: MIT Press.

    Google Scholar 

  • Karadas, F., Pappas, A. C., Surai, P. F., Speake, B. K. (2005). Embryonic development with carotenoid-enriched eggs influences the post-hatch carotenoid status of the chicken. Comparative Biochemistry and Physiology B, 141, 244–251.

    Article  CAS  Google Scholar 

  • Kimball, R. T., Ligon, J. D. (1999). Evolution of avian plumage dichromatism from a proximate perspective. American Naturalist, 154, 182–193.

    Article  Google Scholar 

  • Koutsos, E. A., Clifford, A. J., Calvert, C. C., & Klasing, K. C. (2003). Maternal carotenoid status modifies the incorporation of dietary carotenoids into immune tissues of growing chickens (Gallus gallus domesticus). Journal of Nutrition, 133, 1132–1138.

    PubMed  CAS  Google Scholar 

  • Kritzler, H. (1943). Carotenoids in the display and eclipse plumage of bishop birds. Physiological Zoology, 16, 241–245.

    Google Scholar 

  • Lee, P. C., & Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Applied Microbiology and Biotechnology, 60, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Lewontin, R. C. (1974). The genetic basis of evolutionary change. New York: Columbia University Press.

    Google Scholar 

  • Lewontin, R. C. (1983). Gene, organism and environment. In D. S. Bendall (Ed.), Evolution: From molecules to men (pp. 273–285). Cambridge: Cambridge University Press.

    Google Scholar 

  • Linville, S. U., & Breitwisch, R. (1997). Carotenoid availability and plumage coloration in a wild population of Northern Cardinals. Auk, 114, 796–800.

    Google Scholar 

  • Lucas, A. M., & Stettenheim, P. R. (1972). Avian anatomy: Integument. USDA.

  • Mayr, E. (1963). Animal species and evolution. Cambridge: Harvard University Press.

    Google Scholar 

  • Majerus, M. N., & Mundy, N. (2003). Mammalian melanism: Natural selection in black and white. Trends in Ecology and Evolution, 19, 585–588.

    CAS  Google Scholar 

  • McGraw, K. J. (2004). Colourful songbirds metabolize carotenoids at the integument. Journal of Avian Biology, 35, 471–476.

    Article  Google Scholar 

  • McGraw, K. J. (2006). The mechanics of carotenoid coloration in birds. In: G. E. Hill, & K. J. McGraw (Eds.), Bird coloration. I. Mechanisms and measurements (pp. 177–242). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • McGraw, K. J., & Hardy, L. (2006). Astaxanthin is responsible for the pink plumage flush of Franklins and Ring-billed gulls. Journal of Field Ornithology, 77, 29–33.

    Article  Google Scholar 

  • McGraw, K. J., & Parker, R. S. (2006). A novel lipoprotein-mediated mechanism controlling sexual attractiveness in a colorful songbird. Physiology and Behavior, 87, 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Mijts, B. N., Lee, P. C., & Schmidt-Dannert, C. (2004). Engineering carotenoid biosynthetic pathways. Methods in Enzymology, 388, 315–329.

    Google Scholar 

  • Minvielle, F., Gourichon, D., & Moussu, C. (2005). Two new plumage mutations in the Japanese quail: “curly” feather and “rusty” plumage. BMC Genetics, 6, 1–5.

    Article  CAS  Google Scholar 

  • Nanjundiah, V. (2003). Phenotypic plasticity and evolution by genetic assimilation. In G. B. Muller, & S Newman (Eds.), Origination of organismal form: Beyond the gene in developmental and evolutionary biology (pp. 245–263). Cambridge: The MIT Press.

    Google Scholar 

  • Negro, J. J., Tella, J. L., Hiraldo, F., Bortolotti, G. R., & Prieto, P. (2001). Sex- and age-related variation in plasma carotenoids despite a constant diet in the red-legged partridge (Alectoris rufa). Ardea, 89, 275–279.

    Google Scholar 

  • Olson, S. L. (1970). Specializations of some carotenoid-bearing feathers. Condor, 72, 424–430.

    Article  Google Scholar 

  • Omland, K. E., & Hofmann, C. M. (2005). Adding color to the past: Ancestral-state reconsrtuction of coloration. In G. E. Hill, & K. J. McGraw (Eds.), Bird coloration: Function and evolution (pp. 417–454). Cambridge: Harvard University Press.

    Google Scholar 

  • Oyama, S. (2000). In B. H. Smith & E. R. Weintraub (Eds.), The ontogeny of information: Developmental systems and evolution. Durham: Duke University Press.

  • Panov, E. N. (1989). Natural hybridization and ethological isolation in birds. Moscow: Nauka.

    Google Scholar 

  • Parker, R. S. (1996). Absorption, metabolism, and transport of carotenoids. FASEB Journal, 10, 542–551.

    PubMed  CAS  Google Scholar 

  • Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362–2367.

    Article  PubMed  Google Scholar 

  • Prum, R. O. (2005). Evolution of the morphological innovations of feathers. Journal of Experimental Zoology (Mol Dev Evol), 304B, 570–579.

    Article  Google Scholar 

  • Reeves, C. D. (2003). The enzymology of combinatorial biosynthesis. Critical Reviews in Biotechnology, 23, 95–147.

    Article  PubMed  CAS  Google Scholar 

  • Rice, S. H. (2001). The evolution of developmental interactions: Epistasis, canalization, and integration. In J. B. Wolf, D. I. Brodie Edmund, & M. J. Wade (Eds.), Epistasis and the evolutionary process (pp. 82–98). New York: Oxford University Press.

    Google Scholar 

  • Schlinger, B. A., Fivizzani, A. J., & Callard, G. V. (1989). Aromatase, 5α- and 5β-reductase in brain, pituitary, and skin of the sex-role reversed Wilson’s phalarope. Journal of Endocrinology, 122, 573–581.

    Article  PubMed  CAS  Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution. Philadelphia, Pennsylvania: Blakiston.

    Google Scholar 

  • Schmidt-Dannert, C., Umeno, D., & Arnold, F. H. (2000). Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnology, 18, 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, W. (2003). Metabolome diversity: Too few genes, too many metabolites? Phytochemistry, 62, 837–849.

    Article  PubMed  CAS  Google Scholar 

  • Slagsvold, T., & Lifjeld, J. T. (1985). Variation in plumage colour of the great tit (Parus major) in relation to habitat, season and food. Journal of Zoology London, 206, 321–328.

    Article  Google Scholar 

  • Somes, R. G. J. (2003). Mutations and major variants of plumage and skin in chickens. In R. D. Crawford (Ed.) Poultry breeding and genetics (pp. 169–208). Amsterdam: Elsevier.

    Google Scholar 

  • Stern, D. L. (2000). Evolutionary developmental biology and the problem of variation. Evolution, 54, 1079–1091.

    PubMed  CAS  Google Scholar 

  • Stradi, R. (1998) The colour of flight: Carotenoids in bird plumage. Milan, Italy: University of Milan Press.

    Google Scholar 

  • Stradi, R., Pini, E., & Celentano, G. (2001). Carotenoids in bird plumage: The complement of red pigments in the plumage of wild and captive bullfinch (Pyrrhula pyrrhula). Comparative Biochemistry and Physiology B, 128, 529–535.

    Article  CAS  Google Scholar 

  • Stradi, R., Rossi, E., & Bellardi, B. (1996). Carotenoids in bird plumage: - II. The pattern in three Loxia species and in Pinicola enucleator. Comparative Biochemistry and Physiology B, 113, 427–437.

    Article  Google Scholar 

  • Surai, P. F., Ionov, I. A., Kuklenko, T. V., Kostjuk, I. A., MacPherson, A., Speake, B. K., Noble, R. C., & Sparks, N. H. C. (1998). Effect of supplementing the hen’s diet with vitamin A on the accumulation of vitamins A and E, ascorbic acid and carotenoids in the egg yolk and in the embryonic liver. British Poultry Science, 39, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Surai, P. F., & Speake, B. K. (1998). Distribution of carotenoids form the yolk to the tissues of the chick embryo. Journal of Nutritional Biochemistry, 9:645–651.

    Article  CAS  Google Scholar 

  • Tella, J. L., Figuerola, J., Negro, J. J., Blanco, G., Rodríguez-Estrella, R., Forero, M. G., Blázquez, M. C., Green, A. J., & Hiraldo, F. (2004). Ecological, morpholigical and phylogenetic correlates of interspecific variation in plasma carotenoid concentration in birds. Journal of Evolutionary Biology, 17, 156–164.

    Article  PubMed  CAS  Google Scholar 

  • Test, F. H. (1969). Relation of wing and tail color of the woodpeckers Colaptes auratus and C. cafer to their food. Condor, 71, 206–211.

    Article  Google Scholar 

  • Tobias, A. V., & Arnold, F. H. (2006). Biosynthesis of novel carotenoid families based on unnatural carbon backbones: A model for diversification of natural product pathways. Biochimica et Biophysica Acta, 1761, 235–246.

    PubMed  CAS  Google Scholar 

  • Trams, E. G. (1969). Carotenoid transport in the plasma of the scarlet ibis (Eudocimus ruber). Comparative Biochemistry and Physiology, 28, 117–118.

    Article  Google Scholar 

  • Troy, D. M., & Brush, A. H. (1983). Pigments and feather structure of the redpolls, Carduelis flammea and C. hornemanni. Condor, 85, 443–446.

    Article  Google Scholar 

  • Tyczkowski, J. K., & Hamilton, P. B. (1986). Evidence for differential absorption of zeacarotene, cryptoxanthuin, and lutein in young broiler chickens. Poultry Science, 65, 1137–1140.

    PubMed  CAS  Google Scholar 

  • Umeno, D., Tobias, A. V., & Arnold, F. H. (2005). Diversifying carotenoid byosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews, 69, 51–78.

    Article  PubMed  CAS  Google Scholar 

  • Vitkup, D., Kharchenko, P., & Wagner, A. (2006). Influence of metabolic network structure and function on enzyme evolution. Genome Biology, 7, R39.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. (2003). Risk management in biological evolution. Journal of Theoretical Biology, 225, 45–57.

    Article  PubMed  Google Scholar 

  • Wagner, A. (2005). Robustness and evolvability in living systems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptation and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P., & Schwenk, K. (2000). Evolutionary stable configurations: Functional integration and the evolution of phenotypic stability. Evolutionary Biology, 31, 155–217.

    Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford Univ. Press, p. 795.

    Google Scholar 

  • West -Eberhard, M. J. (2005). Phenotypic accommodation: adaptive innovation due to developmental plasticity. Journal of Experimental Zoology (Mol Dev Evol), 304B, 610–618.

    Article  Google Scholar 

  • Wilkins, A. S. (2001). The evolution of developmental pathways. Sinauer Associates, p. 603.

  • Witmer, M. (1996). Consequences of an alien shrub on the plumage coloration and ecology of cedar waxwings. Auk, 113, 735–743.

    Google Scholar 

  • Young, R. L., & Badyaev, A. V. (2007). Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal structures. Integrative and Comparative Biology (in press).

  • Young, R. L., Haselkorn, T. S., & Badyaev, A. V. (2007). Functional equivalence of morphologies enables morphological and ecological versatility. Evolution.

  • Yu, M. K., Yue, Z. C., Wu, P., Wu, D. Y., & Mayer, J. A., et al. (2004). The developmental biology of feather follicles. International Journal of Developmental Biology, 48, 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Yu, M., Wu, P., Widelitz, R. B., & Chuong, C.-M. (2002). The morphogenesis of feathers. Nature, 420, 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Yue, Z., Jiang, T. -X., Widelitz, R. B., & Chuong, C. -M. (2005). Mapping stem cell activities in the feather follicle. Nature, 438, 1026–1029.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank B. Hallgrímsson, K. Oh, D. Seaman, R. Young, L. Landeen, and three anonymous reviewers for exceptionally useful comments on previous versions of this manuscript, and C. Schmidt-Dannert, R. Duckworth, and E. Bradley for extensive discussions and many suggestions. This work was funded, in part, by the National Science Foundation grants and the David and Lucille Packard Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Badyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badyaev, A.V. Evolvability and Robustness in Color Displays: Bridging the Gap between Theory and Data. Evol. Biol. 34, 61–71 (2007). https://doi.org/10.1007/s11692-007-9004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-007-9004-5

Keywords

Navigation