Skip to main content
Log in

Influence de l’obésité sur les phénomènes neurodégénératifs

Influence of obesity on neurodegeneration

  • Article Original/Original Article
  • Published:
Obésité

Résumé

Différents éléments extérieurs au système nerveux central (SNC) peuvent influencer son fonctionnement et sa réponse à des agressions. D’une part, l’alimentation, selon sa composition, peut augmenter ou diminuer les risques de neurodégénérescence. D’autre part, des études épidémiologiques et des expériences sur des modèles animaux montrent que le surpoids et l’obésité augmentent le risque de développer des maladies neurodégénératives (Alzheimer, Parkinson…) ainsi que la susceptibilité à des neurodégénérescences aiguës (traumatisme, ischémie, chimique…). La neurogenèse constitutive ou induite dans le SNC adulte représente un espoir thérapeutique permettant de compenser les pertes liées aux phénomènes neurodégénératifs. Cependant, même s’il a été montré que l’alimentation peut affecter la production de nouveaux neurones, l’influence de l’excès de tissu adipeux sur la neurogenèse n’est pas encore déterminée.

Abstract

Central nervous system (CNS) functioning and response to attacks can be modified by external factors. On the one hand, food, depending on its composition, can increase or decrease the risk of developing neurodegeneration. On the other hand, epidemiological studies and research on animal models have shown that overweight and obesity increase the risk of neurodegenerative disease (Alzheimer, Parkinson…), as well as susceptibility to acute neurodegeneration. Constitutive or induced neurogenesis in the adult CNS has brought new hope with respect to therapies that might compensate for damage caused by neurodegeneration. However, even if some diets have been shown to affect new neuron production, the effect of excess fat tissue on neurogenesis remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Cancello R, Tounian A, Poitou C, Clement K (2004) Adiposity signals, genetic and body weight regulation in humans. Diabetes Metab 30: 215–227

    Article  PubMed  CAS  Google Scholar 

  2. Turtzo LC, Lane MD (2002) Completing the loop: neuronadipocyte interactions and the control of energy homeostasis. Horm Metab Res 34: 607–615

    Article  PubMed  CAS  Google Scholar 

  3. Zhang Y, Proenca R, Maffei M, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432

    Article  PubMed  CAS  Google Scholar 

  4. Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41: 317–318

    PubMed  CAS  Google Scholar 

  5. Chua SC Jr., Chung WK, Wu-Peng XS, et al. (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271: 994–996

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz MW, Woods SC, Seeley RJ, et al. (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52: 232–238

    Article  PubMed  CAS  Google Scholar 

  7. Masuzaki H, Ogawa Y, Sagawa N, et al. (1997) Non-adipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med 3: 1029–1033

    Article  PubMed  CAS  Google Scholar 

  8. Kalra SP, Dube MG, Pu S, et al. (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68–100

    Article  PubMed  CAS  Google Scholar 

  9. Loffreda S, Yang SQ, Lin HZ, et al. (1998) Leptin regulates pro-inflammatory immune responses. Faseb J 12: 57–65

    PubMed  CAS  Google Scholar 

  10. Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by gluco-corticoid. J Clin Endocrinol Metab 83: 847–850

    Article  PubMed  CAS  Google Scholar 

  11. Wallenius V, Wallenius K, Ahren B, et al. (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8: 75–79

    Article  PubMed  CAS  Google Scholar 

  12. Hotamisligil GS, Arner P, Caro JF, et al. (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95: 2409–2415

    Article  PubMed  CAS  Google Scholar 

  13. Pan W, Kastin AJ (2003) Interactions of cytokines with the blood-brain barrier: implications for feeding. Curr Pharm Des 9: 827–831

    Article  PubMed  CAS  Google Scholar 

  14. Pan W, Kastin AJ, Rigai T, et al. (2003) Increased hippocampal uptake of tumor necrosis factor alpha and behavioral changes in mice. Exp Brain Res 149: 195–199

    PubMed  CAS  Google Scholar 

  15. Rogers J, Mastroeni D, Leonard B, et al. (2007) Neuro-inflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82: 235–246

    PubMed  CAS  Google Scholar 

  16. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease: a double-edged sword. Neuron 35: 419–432

    Article  PubMed  CAS  Google Scholar 

  17. Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29: 518–527

    Article  PubMed  CAS  Google Scholar 

  18. Kalmijn S (2000) Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J Nutr Health Aging 4: 202–207

    PubMed  CAS  Google Scholar 

  19. Molteni R, Barnard RJ, Ying Z, et al. (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112: 803–814

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X, Dong F, Ren J, et al. (2005) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191: 318–325

    Article  PubMed  CAS  Google Scholar 

  21. Solfrizzi V, D’Introno A, Colacicco AM, et al. (2005) Dietary fatty acids intake: possible role in cognitive decline and dementia. Exp Gerontol 40: 257–270

    Article  PubMed  CAS  Google Scholar 

  22. Calabrese V, Guagliano E, Sapienza M, et al. (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32: 757–773

    Article  PubMed  CAS  Google Scholar 

  23. Anson RM, Guo Z, de Cabo R, et al. (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 100: 6216–6220

    Article  PubMed  CAS  Google Scholar 

  24. Xu H, Barnes GT, Yang Q, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821–1830

    PubMed  CAS  Google Scholar 

  25. Qin L, Wu X, Block ML, et al. (2007) Systemic LPS causes chronic neuro-inflammation and progressive neurodegeneration. Glia 55: 453–462

    Article  PubMed  Google Scholar 

  26. Palaniyandi R (2007) Modulation of inflammation in fat tissue: Potential involvement in chemically induced neurodegeneration [Thèse de doctorat]. Saint Denis: université de La Réunion. p. 171

    Google Scholar 

  27. Zametkin AJ, Zoon CK, Klein HW, Munson S (2004) Psychiatric aspects of child and adolescent obesity: a review of the past 10 years. J Am Acad Child Adolesc Psychiatry 43: 134–150

    Article  PubMed  Google Scholar 

  28. Whitmer RA (2007) The epidemiology of adiposity and dementia. Curr Alzheimer Res 4: 117–122

    Article  PubMed  CAS  Google Scholar 

  29. Gustafson D, Rothenberg E, Blennow K, et al. (2003) An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 163: 1524–1528

    Article  PubMed  Google Scholar 

  30. Gustafson D (2006) Adiposity indices and dementia. Lancet Neurol 5: 713–720

    Article  PubMed  Google Scholar 

  31. Gustafson D, Lissner L, Bengtsson C, et al. (2004) A 24-year follow-up of body mass index and cerebral atrophy. Neurology 63: 1876–1881

    PubMed  CAS  Google Scholar 

  32. Gustafson DR, Steen B, Skoog I (2004) Body mass index and white matter lesions in elderly women. An 18-year longitudinal study. Int Psychogeriatr 16: 327–336

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt E, Seifert M, Baumeister R (2007) Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 4: 199–217

    Article  PubMed  Google Scholar 

  34. Birman S (2000) La drosophile, un modèle génétique pour l’étude des maladies neurodégénératives. Med Sci (Paris) 16: 164–170

    Google Scholar 

  35. Sriram K, Benkovic SA, Miller DB, O’Callaghan JP (2002) Obesity exacerbates chemically induced neurodegeneration. Neuroscience 115: 1335–1346

    Article  PubMed  CAS  Google Scholar 

  36. Choi JY, Jang EH, Park CS, Kang JH (2005) Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med 38: 806–816

    Article  PubMed  CAS  Google Scholar 

  37. Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135: 1127–1128

    Article  PubMed  CAS  Google Scholar 

  38. Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89: 8591–8595

    Article  PubMed  CAS  Google Scholar 

  39. Gage FH, Coates PW, Palmer TD, et al. (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92: 11879–11883

    Article  PubMed  CAS  Google Scholar 

  40. Okano H, Sakaguchi M, Ohki K, et al. (2007) Regeneration of the central nervous system using endogenous repair mechanisms. J Neurochem 102: 1459–1465

    Article  PubMed  CAS  Google Scholar 

  41. Kokoeva MV, Yin H, Flier JS (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505: 209–220

    Article  PubMed  Google Scholar 

  42. Brown J, Cooper-Kuhn CM, Kempermann G, et al. (2003) Enriched environment and physical activity stimulate 31 hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17: 2042–2046

    Article  PubMed  Google Scholar 

  43. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96: 13427–13431

    Article  PubMed  Google Scholar 

  44. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18: 7768–7778

    PubMed  CAS  Google Scholar 

  45. Bengzon J, Kokaia Z, Elmer E, et al. (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94: 10432–10437

    Article  PubMed  CAS  Google Scholar 

  46. Harry GJ, McPherson CA, Wine RN, et al. (2004) Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox Res 5: 623–627

    Article  PubMed  Google Scholar 

  47. Chen H, Tung YC, Li B, et al. (2007) Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging 28: 1148–11462

    Article  PubMed  CAS  Google Scholar 

  48. Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310: 679–683

    Article  PubMed  CAS  Google Scholar 

  49. Lindqvist A, Mohapel P, Bouter B, et al. (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13: 1385–1388

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lefebvre d’Hellencourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravanan, P., Rouch, C. & Lefebvre d’Hellencourt, C. Influence de l’obésité sur les phénomènes neurodégénératifs. Obes 3, 27–32 (2008). https://doi.org/10.1007/s11690-008-0100-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-008-0100-1

Mots clés

Keywords

Navigation