Skip to main content
Log in

Predictive values of plasma TNFα and IL-8 for intracranial hemorrhage in patients with acute promyelocytic leukemia

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

In patients with acute promyelocytic leukemia (APL), intracranial hemorrhage (ICH), if not identified promptly, could be fatal. It is the leading cause of failure of induction and early death. Thus, biomarkers that could promptly predict severe complications are critical. Here, cytokine differences between patients with APL with and without ICH were investigated to develop predictive models for this complication. The initial cytokine profiling using plasma samples from 39 patients and 18 healthy donors found a series of cytokines that were remarkedly different between patients with APL and healthy controls. The APL patients were subsequently divided into high and low white blood cell count groups. Results showed that tumor necrosis factor a and interleukin 8 (IL-8) were vital in distinguishing patients with APL who did or did not develop ICH. In addition, verification in 81 patients with APL demonstrated that the two cytokines were positively correlated with the cumulative incidence of ICH. Finally, in-vitro and in-vivo experimental evidence were provided to show that IL-8 influenced the migration of APL-derived NB4 cells and impaired the blood-brain barrier in PML/RARα positive blast-transplanted FVB/NJ mice. These assessments may facilitate the early warning of ICH and reduce future mortality levels in APL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de la Serna J, Montesinos P, Vellenga E, Rayón C, Parody R, León A, Esteve J, Bergua JM, Milone G, Debén G, Rivas C, González M, Tormo M, Díaz-Mediavilla J, González JD, Negri S, Amutio E, Brunet S, Lowenberg B, Sanz MA. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood 2008; 111(7): 3395–3402

    Article  CAS  Google Scholar 

  2. Yanada M, Matsushita T, Asou N, Kishimoto Y, Tsuzuki M, Maeda Y, Horikawa K, Okada M, Ohtake S, Yagasaki F, Matsumoto T, Kimura Y, Shinagawa K, Iwanaga M, Miyazaki Y, Ohno R, Naoe T. Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia: incidence, risk factors, and influence on outcome. Eur J Haematol 2007; 78(3): 213–219

    Article  Google Scholar 

  3. Jillella AP, Kota VK. The global problem of early deaths in acute promyelocytic leukemia: a strategy to decrease induction mortality in the most curable leukemia. Blood Rev 2018; 32(2): 89–95

    Article  CAS  Google Scholar 

  4. Mantha S, Goldman DA, Devlin SM, Lee JW, Zannino D, Collins M, Douer D, Iland HJ, Litzow MR, Stein EM, Appelbaum FR, Larson RA, Stone R, Powell BL, Geyer S, Laumann K, Rowe JM, Erba H, Coutre S, Othus M, Park JH, Wiernik PH, Tallman MS. Determinants of fatal bleeding during induction therapy for acute promyelocytic leukemia in the ATRA era. Blood 2017; 129(13): 1763–1767

    Article  CAS  Google Scholar 

  5. Mantha S, Tallman MS, Devlin SM, Soff GA. Predictive factors of fatal bleeding in acute promyelocytic leukemia. Thromb Res 2018; 164(Supp 1): S98–S102

    Article  CAS  Google Scholar 

  6. De Boer B, Sheveleva S, Apelt K, Vellenga E, Mulder AB, Schuringa GH, Jacob J. The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis. Haematologica 2021; 106(12): 3067–3078

    Article  CAS  Google Scholar 

  7. Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH, Tronci L, Nikitopoulou E, Barber M, Gallipoli P, Marando L, Fernández de Castillejo CL, Tzankov A, Dietmann S, Cavo M, Catani L, Curti A, Vázquez J, Frezza C, Huntly BJ, Schwaller J, Méndez-Ferrer S. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell Metab 2020; 32(5): 829–843.e9

    Article  CAS  Google Scholar 

  8. Stuani L, Sarry JE. Microenvironmental aspartate preserves leukemic cells from therapy-induced metabolic collapse. Cell Metab 2020; 32(3): 321–323

    Article  CAS  Google Scholar 

  9. Bulaeva E, Pellacani D, Nakamichi N, Hammond CA, Beer PA, Lorzadeh A, Moksa M, Carles A, Bilenky M, Lefort S, Shu J, Wilhelm BT, Weng AP, Hirst M, Eaves CJ. MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood 2020; 136(24): 2764–2773

    Article  CAS  Google Scholar 

  10. Yamashita M, Passegué E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 2019; 25(3): 357–372.e7

    Article  CAS  Google Scholar 

  11. Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft LE, Kinstrie R, Guitart AV, Dunn K, Abraham SA, Sansom O, Michie AM, Machesky L, Kranc KR, Graham GJ, Pellicano F, Holyoake TL. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 2016; 128(3): 371–383

    Article  CAS  Google Scholar 

  12. Chen F, Zhou K, Zhang L, Ma F, Chen D, Cui J, Feng X, Yang S, Chi Y, Han Z, Xue F, Rong L, Ge M, Wan L, Xu S, Du W, Lu S, Ren H, Han Z. Mesenchymal stem cells induce granulocytic differentiation of acute promyelocytic leukemic cells via IL-6 and MEK/ERK pathways. Stem Cells Dev 2013; 22(13): 1955–1967

    Article  CAS  Google Scholar 

  13. Ma R, Li T, Cao M, Si Y, Wu X, Zhao L, Yao Z, Zhang Y, Fang S, Deng R, Novakovic VA, Bi Y, Kou J, Yu B, Yang S, Wang J, Zhou J, Shi J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis 2016; 7(6): e2283

    Article  CAS  Google Scholar 

  14. Palibrk V, Suganthan R, Scheffler K, Wang W, Bjørås M, Bøe SO. PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model. Cell Death Dis 2016; 7(7): e2320

    Article  CAS  Google Scholar 

  15. Breen KA, Grimwade D, Hunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. Br J Haematol 2012; 156(1): 24–36

    Article  CAS  Google Scholar 

  16. Sanz MA, Lo Coco F, Martín G, Avvisati G, Rayón C, Barbui T, Díaz-Mediavilla J, Fioritoni G, González JD, Liso V, Esteve J, Ferrara F, Bolufer P, Bernasconi C, Gonzalez M, Rodeghiero F, Colomer D, Petti MC, Ribera JM, Mandelli F. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 2000; 96(4): 1247–1253

    CAS  Google Scholar 

  17. Breiman L. Random Forests. Mach Learn 2001; 45(1): 5–32

    Article  Google Scholar 

  18. Liaw A, Wiener M. Classification and regression by randomForest. R News 2002; 2: 18–22

    Google Scholar 

  19. Lehmann S, Ravn A, Carlsson L, Antunovic P, Deneberg S, Möllgård L, Derolf AR, Stockelberg D, Tidefelt U, Wahlin A, Wennström L, Höglund M, Juliusson G. Continuing high early death rate in acute promyelocytic leukemia: a population-based report from the Swedish Adult Acute Leukemia Registry. Leukemia 2011; 25(7): 1128–1134

    Article  CAS  Google Scholar 

  20. Gurnari C, Breccia M, Di Giuliano F, Scalzulli E, Divona M, Piciocchi A, Cicconi L, De Bellis E, Venditti A, Del Principe MI, Arcese W, Lo-Coco F, Garaci F, Voso MT. Early intracranial haemorrhages in acute promyelocytic leukaemia: analysis of neuroradiological and clinico-biological parameters. Br J Haematol 2021; 193(1): 129–132

    Article  CAS  Google Scholar 

  21. Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Bañas H, Morgado S, Casado JG, Solana R, Tarazona R. Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine 2013; 61(3): 885–891

    Article  CAS  Google Scholar 

  22. Carey A, Edwards DK5th, Eide CA, Newell L, Traer E, Medeiros BC, Pollyea DA, Deininger MW, Collins RH, Tyner JW, Druker BJ, Bagby GC, McWeeney SK, Agarwal A. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep 2017; 18(13): 3204–3218

    Article  CAS  Google Scholar 

  23. Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA factor-dependent positive-feedback circuit in acute myeloid leukemia cells. Cell Rep 2016; 16(9): 2428–2441

    Article  CAS  Google Scholar 

  24. Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev 2018; 43: 8–15

    Article  CAS  Google Scholar 

  25. Bi KH, Jiang GS. Relationship between cytokines and leukocytosis in patients with APL induced by all-trans retinoic acid or arsenic trioxide. Cell Mol Immunol 2006; 3(6): 421–427

    CAS  Google Scholar 

  26. Choudhry A, DeLoughery TG. Bleeding and thrombosis in acute promyelocytic leukemia. Am J Hematol 2012; 87(6): 596–603

    Article  Google Scholar 

  27. Jambrovics K, Uray IP, Keresztessy Z, Keillor JW, Fésüs L, Balajthy Z. Transglutaminase 2 programs differentiating acute promyelocytic leukemia cells in all-trans retinoic acid treatment to inflammatory stage through NF-κB activation. Haematologica 2019; 104(3): 505–515

    Article  CAS  Google Scholar 

  28. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674

    Article  CAS  Google Scholar 

  29. Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez-Cadena A, Salomé B, Lecciso M, Salvestrini V, Verdeil G, Racle J, Papayannidis C, Morita H, Pizzitola I, Grandclément C, Bohner P, Bruni E, Girotra M, Pallavi R, Falvo P, Leibundgut EO, Baerlocher GM, Carlo-Stella C, Taurino D, Santoro A, Spinelli O, Rambaldi A, Giarin E, Basso G, Tresoldi C, Ciceri F, Gfeller D, Akdis CA, Mazzarella L, Minucci S, Pelicci PG, Marcenaro E, McKenzie ANJ, Vanhecke D, Coukos G, Mavilio D, Curti A, Derré L, Jandus C. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat Commun 2017; 8(1): 593

    Article  Google Scholar 

  30. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436–444

    Article  CAS  Google Scholar 

  31. Tsai WH, Hsu HC, Lin CC, Ho CK, Kou YR. Role of interleukin-8 and growth-regulated oncogene-alpha in the chemotactic migration of all-trans retinoic acid-treated promyelocytic leukemic cells toward alveolar epithelial cells. Crit Care Med 2007; 35(3): 879–885

    Article  CAS  Google Scholar 

  32. Tsai WH, Shih CH, Lin CC, Ho CK, Hsu FC, Hsu HC. Monocyte chemotactic protein-1 in the migration of differentiated leukaemic cells toward alveolar epithelial cells. Eur Respir J 2008; 31(5): 957–962

    Article  CAS  Google Scholar 

  33. Ataca Atilla P, McKenna MK, Tashiro H, Srinivasan M, Mo F, Watanabe N, Simons BW, McLean Stevens A, Redell MS, Heslop HE, Mamonkin M, Brenner MK, Atilla E. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. J Immunother Cancer 2020; 8(2): e001229

    Article  Google Scholar 

  34. Kang TY, Bocci F, Jolly MK, Levine H, Onuchic JN, Levchenko A. Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci USA 2019; 116(47): 23551–23561

    Article  CAS  Google Scholar 

  35. Smyth LCD, Rustenhoven J, Park TI, Schweder P, Jansson D, Heppner PA, O’Carroll SJ, Mee EW, Faull RLM, Curtis M, Dragunow M. Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation 2018; 15(1): 138

    Article  Google Scholar 

  36. Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. J Exp Med 2014; 211(6): 1093–1108

    Article  CAS  Google Scholar 

  37. Lee TH, Hsieh ST, Chiang HY. Fibronectin inhibitor pUR4 attenuates tumor necrosis factor α-induced endothelial hyperpermeability by modulating β1 integrin activation. J Biomed Sci 2019; 26(1): 37

    Article  Google Scholar 

  38. Doran KS, Liu GY, Nizet V. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 2003; 112(5): 736–744

    Article  CAS  Google Scholar 

  39. Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 2010; 30(3): 459–473

    Article  CAS  Google Scholar 

  40. Meng L, Zhao Y, Bu W, Li X, Liu X, Zhou D, Chen Y, Zheng S, Lin Q, Liu Q, Sun H. Bone mesenchymal stem cells are recruited via CXCL8-CXCR2 and promote EMT through TGF-β signal pathways in oral squamous carcinoma. Cell Prolif 2020; 53(8): e12859

    Article  CAS  Google Scholar 

  41. Jayatilaka H, Tyle P, Chen JJ, Kwak M, Ju J, Kim HJ, Lee JSH, Wu PH, Gilkes DM, Fan R, Wirtz D. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat Commun 2017; 8(1): 15584

    Article  CAS  Google Scholar 

  42. Cai P, Wu Q, Wang Y, Yang X, Zhang X, Chen S. An effective early death scoring system for predicting early death risk in de novo acute promyelocytic leukemia. Leuk Lymphoma 2020; 61(8): 1989–1995

    Article  Google Scholar 

  43. Jin B, Zhang Y, Hou W, Cao F, Lu M, Yang H, Tian X, Wang Y, Hou J, Fu J, Li H, Zhou J. Comparative analysis of causes and predictors of early death in elderly and young patients with acute promyelocytic leukemia treated with arsenic trioxide. J Cancer Res Clin Oncol 2020; 146(2): 485–492

    Article  CAS  Google Scholar 

  44. Abla O, Ribeiro RC, Testi AM, Montesinos P, Creutzig U, Sung L, Di Giuseppe G, Stephens D, Feusner JH, Powell BL, Hasle H, Kaspers GJL, Dalla-Pozza L, Lassaletta A, Tallman MS, Locatelli F, Reinhardt D, Lo-Coco F, Hitzler J, Sanz MA. Predictors of thrombohemorrhagic early death in children and adolescents with t(15;17)-positive acute promyelocytic leukemia treated with ATRA and chemotherapy. Ann Hematol 2017; 96(9): 1449–1456

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81890994, 81770144, 81870119, 81800141, and 81770153) and the National Key Research and Development Program (No. 2019YFA0905900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junmin Li or Kankan Wang.

Additional information

Compliance with ethics guidelines

Fangyi Dong, Li Chen, Chaoxian Zhao, Xiaoyang Li, Yun Tan, Huan Song, Wen Jin, Hongming Zhu, Yunxiang Zhang, Kai Xue, Junmin Li, and Kankan Wang declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Chen, L., Zhao, C. et al. Predictive values of plasma TNFα and IL-8 for intracranial hemorrhage in patients with acute promyelocytic leukemia. Front. Med. 16, 909–918 (2022). https://doi.org/10.1007/s11684-021-0890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0890-1

Keywords

Navigation