Skip to main content
Log in

DDB1- and CUL4-associated factor 8 plays a critical role in spermatogenesis

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Cullin-RING E3 ubiquitin ligase (CRL)-4 is a member of the large CRL family in eukaryotes. It plays important roles in a wide range of cellular processes, organismal development, and physiological and pathological conditions. DDB1- and CUL4-associated factor 8 (DCAF8) is a WD40 repeat-containing protein, which serves as a substrate receptor for CRL4. The physiological role of DCAF8 is unknown. In this study, we constructed Dcaf8 knockout mice. Homozygous mice were viable with no noticeable abnormalities. However, the fertility of Dcaf8-deficient male mice was markedly impaired, consistent with the high expression of DCAF8 in adult mouse testis. Sperm movement characteristics, including progressive motility, path velocity, progressive velocity, and track speed, were significantly lower in Dcaf8 knockout mice than in wild-type (WT) mice. However, the total motility was similar between WT and Dcaf8 knockout sperm. More than 40% of spermatids in Dcaf8 knockout mice showed pronounced morphological abnormalities with typical bent head malformation. The acrosome and nucleus of Dcaf8 knockout sperm looked similar to those of WT sperm. In vitro tests showed that the fertilization rate of Dcaf8 knockout mice was significantly reduced. The results demonstrated that DCAF8 plays a critical role in spermatogenesis, and DCAF8 is a key component of CRL4 function in the reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Genetics of male infertility. Curr Urol Rep 2016; 17(10): 70

    Article  PubMed  Google Scholar 

  2. Schlegel PN. Evaluation of male infertility. Minerva Ginecol 2009; 61(4): 261–283

    CAS  PubMed  Google Scholar 

  3. O’Flynn O’Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril 2010; 93(1): 1–12

    Article  PubMed  Google Scholar 

  4. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 2011; 25(2): 271–285

    Article  PubMed  Google Scholar 

  5. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res 2002; 57(1): 103–128

    Article  CAS  PubMed  Google Scholar 

  6. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod 1998; 13(Suppl 1): 1–8

    Article  PubMed  Google Scholar 

  7. Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 2003; 100(21): 12201–12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou CC, Yang WX. New insights to the ubiquitin-proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2013; 40(4): 3213–3230

    Article  CAS  PubMed  Google Scholar 

  9. Baarends WM, van der Laan R, Grootegoed JA. Specific aspects of the ubiquitin system in spermatogenesis. J Endocrinol Invest 2000; 23(9): 597–604

    Article  CAS  PubMed  Google Scholar 

  10. Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P. Cul4A is essential for spermatogenesis and male fertility. Dev Biol 2011; 352(2): 278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 2011; 43(5): 339–345

    Article  CAS  Google Scholar 

  12. Wang S, Zheng H, Esaki Y, Kelly F, Yan W. Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biol Reprod 2006; 74(1): 102–108

    Article  CAS  PubMed  Google Scholar 

  13. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 2010; 18(3): 371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petroski MD, Deshaies RJ. Function and regulation of Cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6(1): 9–20

    Article  CAS  PubMed  Google Scholar 

  15. Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34(11): 562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Connell BC, Harper JW. Ubiquitin proteasome system (UPS): what can chromatin do for you? Curr Opin Cell Biol 2007; 19(2): 206–214

    Article  PubMed  Google Scholar 

  17. Zhong W, Feng H, Santiago FE, Kipreos ET. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 2003; 423(6942): 885–889

    Article  CAS  PubMed  Google Scholar 

  18. Sugasawa K. The CUL4 enigma: culling DNA repair factors. Mol Cell 2009; 34(4): 403–404

    Article  CAS  PubMed  Google Scholar 

  19. Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2019; 1871(1): 138–159

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 2006; 22(3): 383–394

    Article  PubMed  Google Scholar 

  21. Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 2007; 26(6): 775–780

    Article  CAS  PubMed  Google Scholar 

  22. Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 2006; 443(7111): 590–593

    Article  CAS  PubMed  Google Scholar 

  23. Yin Y, Liu L, Yang C, Lin C, Veith GM, Wang C, Sutovsky P, Zhou P, Ma L. Cell autonomous and nonautonomous function of CUL4B in mouse spermatogenesis. J Biol Chem 2016; 291(13): 6923–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin CY, Chen CY, Yu CH, Yu IS, Lin SR, Wu JT, Lin YH, Kuo PL, Wu JC, Lin SW. Human X-linked intellectual disability factor CUL4B is required for post-meiotic sperm development and male fertility. Sci Rep 2016; 6(1): 20227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin Y, Lin C, Kim ST, Roig I, Chen H, Liu L, Veith GM, Jin RU, Keeney S, Jasin M, Moley K, Zhou P, Ma L. The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol 2011; 356(1): 51–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ali A, Mistry BV, Ahmed HA, Abdulla R, Amer HA, Prince A, Alazami AM, Alkuraya FS, Assiri A. Deletion of DDB1- and CUL4-associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. Sci Rep 2018; 8(1): 9202

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Zhou L, Wang X, Lu J, Zhang R, Liang X, Wang L, Deng W, Zeng YX, Huang H, Kang T. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov 2016; 2(1): 16014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nowak M, Suenkel B, Porras P, Migotti R, Schmidt F, Kny M, Zhu X, Wanker EE, Dittmar G, Fielitz J, Sommer T. DCAF8, a novel MuRF1 interaction partner, promotes muscle atrophy. J Cell Sci 2019; 132(17): jcs233395

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, Zhang T, Song T, Zhao J, Endo Y, Lin H, Cai X, Cang Y. CRL4DCAF8 ubiquitin ligase targets histone H3K79 and promotes H3K9 methylation in the liver. Cell Rep 2017; 18(6): 1499–1511

    Article  CAS  PubMed  Google Scholar 

  30. Huang D, Liu C, Sun X, Sun X, Qu Y, Tang Y, Li G, Tong T. CRL4DCAF8 and USP11 oppositely regulate the stability of myeloid leukemia factors (MLFs). Biochem Biophys Res Commun 2020; 529(2): 127–132

    Article  CAS  PubMed  Google Scholar 

  31. Klein CJ, Wu Y, Vogel P, Goebel HH, Bönnemann C, Zukosky K, Botuyan MV, Duan X, Middha S, Atkinson EJ, Mer G, Dyck PJ. Ubiquitin ligase defect by DCAF8 mutation causes HMSN2 with giant axons. Neurology 2014; 82(10): 873–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, Kang JY, Wang X, Li H, Hua MM, Zhao S, Hu SD, Wu LG, Shi HJ, Li Y, Fu XD, Qu LH, Wang ED, Liu MF. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 2015; 25 (2): 266

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell 2017; 169(6):1090–1104.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(− ΔΔC(T)) method. Methods 2001; 25(4): 402–408

    Article  CAS  PubMed  Google Scholar 

  35. Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc 2007; 2(6): 1445–1457

    Article  CAS  PubMed  Google Scholar 

  36. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 1985; 44(4): 493–498

    Article  CAS  PubMed  Google Scholar 

  37. Chen Q, Peng H, Lei L, Zhang Y, Kuang H, Cao Y, Shi QX, Ma T, Duan E. Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Res 2011; 21(6): 922–933

    Article  CAS  PubMed  Google Scholar 

  38. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002; 4(Suppl): s41–s49

    PubMed  Google Scholar 

  39. Jamsai D, O’Bryan MK. Mouse models in male fertility research. Asian J Androl 2011; 13(1): 139–151

    Article  PubMed  Google Scholar 

  40. Sutovsky P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 2003; 61(1): 88–102

    Article  CAS  PubMed  Google Scholar 

  41. Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci USA 2014; 111(24): 8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hou X, Zhang W, Xiao Z, Gan H, Lin X, Liao S, Han C. Mining and characterization of ubiquitin E3 ligases expressed in the mouse testis. BMC Genomics 2012; 13(1): 495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 2013; 342(6165): 1518–1521

    Article  CAS  PubMed  Google Scholar 

  44. Yu C, Xu YW, Sha QQ, Fan HY. CRL4DCAF1 is required in activated oocytes for follicle maintenance and ovulation. Mol Hum Reprod 2015; 21(2): 195–205

    Article  CAS  PubMed  Google Scholar 

  45. Yu C, Ji SY, Sha QQ, Sun QY, Fan HY. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun 2015; 6(1): 8017

    Article  CAS  PubMed  Google Scholar 

  46. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update 2006; 12(1): 23–37

    Article  CAS  PubMed  Google Scholar 

  47. Sutton KA, Jungnickel MK, Florman HM. A polycystin-1 controls postcopulatory reproductive selection in mice. Proc Natl Acad Sci USA 2008; 105(25): 8661–8666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Zhang YL, Zhao LW, Guo JX, Yu JL, Ji SY, Cao LR, Zhang SY, Shen L, Ou XH, Fan HY. Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ 2019; 26 (7): 1251–1266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of Natural Science Foundation of China (Nos. 8153006 and 81870112 to Ruibao Ren, No. 81970134 to Ping Liu), Shanghai Science and Technology Development Funds (No. 18ZR1423600 to Ruibao Ren), Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research (No. 2019CXJQ01 to Ruibao Ren), the Samuel Waxman Cancer Research Foundation and Innovative Research Team of High-level Local Universities in Shanghai (to Ruibao Ren).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Ji, Ping Liu or Ruibao Ren.

Additional information

Compliance with ethics guidelines

Xiuli Zhang, Zhizhou Xia, Xingyu Lv, Donghe Li, Mingzhu Liu, Ruihong Zhang, Tong Ji, Ping Liu, and Ruibao Ren declare that they have no conflicts of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xia, Z., Lv, X. et al. DDB1- and CUL4-associated factor 8 plays a critical role in spermatogenesis. Front. Med. 15, 302–312 (2021). https://doi.org/10.1007/s11684-021-0851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0851-8

Keywords

Navigation