Skip to main content
Log in

Specific aspects of the ubiquitin system in spermatogenesis

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The ubiquitin system is involved in numerous cellular processes, regulating the amounts and/or activities of specific proteins through posttranslational coupling with ubiquitin or ubiquitinlike proteins. In spermatogenesis, there appears to be a special requirement for certain components of the ubiquitin system, as exemplified in human and mouse by mutation of USP9Y and HR6B, respectively. Both genes encode proteins which take part in the ubiquitin system and are ubiquitously expressed, but their mutation generates no apparent phenotype other than male infertility. Different phases of mammalian spermatogenesis probably require different specialized activities of the ubiquitin system. It is anticipated that ubiquitination activities similar to those required during mitotic cell cycle regulation will play some role in control of the meiotic divisions. In spermatocytes, there is an intricate link among DNA repair, the ubiquitin system, and regulation of meiotic chromatin structure, as indicated by the co-localization of proteins involved in these processes on meiotic recombination complexes. HR6B and its nearly identical homolog HR6A are multiple function proteins, with ubiquitin-conjugating activity and essential roles in post-replication DNA repair. HR6B, possibly together with the ubiquitin-ligating enzyme mRAD18Sc, is most likely involved in chromatin re-organization during the meiotic and postmeiotic phases of spermatogenesis. Biochemical data indicate that, in particular during spermiogenesis, the general activity of the ubiquitin system is high, which most likely is related to the high requirement for massive breakdown of cytoplasmatic and nuclear proteins during this last phase of spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun C., Skaletsky H., Birren B., Devon K., Tang Z., Silber S., Oates R., Page D.C. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat. Genet. 1999, 23: 429–432.

    Article  CAS  PubMed  Google Scholar 

  2. Roest H.P., van Klaveren J., de Wit J., van Gurp C.G., Koken M.H.M., Vermey M., van Roijen J.H., Vreeburg J.T.M., Baarends W.M., Bootsma D., Grootegoed J.A., Hoeijmakers J.H.J. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes a defect in spermatogenesis associated with chromatin modification. Cell 1996, 86: 799–810.

    Article  CAS  PubMed  Google Scholar 

  3. Grootegoed J.A., Baarends W.M., Roest H.P., Hoeijmakers J.H. Knockout mouse models and gametogenic failure. Mol. Cell. Endocrinol. 1998, 145: 161–166.

    Article  CAS  PubMed  Google Scholar 

  4. Koken M.H., Reynolds P., Jaspers-Dekker I., Prakash L., Prakash S., Bootsma D., Hoeijmakers J.H. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc. Natl. Acad. Sci. USA 1991, 88: 8865–8869.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ciechanover A., Orian A., Schwartz A.L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 2000, 22: 442–451.

    Article  CAS  PubMed  Google Scholar 

  6. Wilkinson K.D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 1997, 11: 1245–1256.

    CAS  PubMed  Google Scholar 

  7. Johnson P.R., Hochstrasser M. SUMO-1: ubiquitin gains weight. Trends Cell Biol. 1997, 7: 408–413.

    Article  CAS  PubMed  Google Scholar 

  8. Tyers M., Jorgensen P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 2000, 10: 54–64.

    Article  CAS  PubMed  Google Scholar 

  9. Agell N., Chiva M., Mezquita C. Changes in nuclear content of protein conjugate histone H2A-ubiquitin during rooster spermatogenesis. FEBS Lett. 1983, 155: 209–212.

    Article  CAS  PubMed  Google Scholar 

  10. Nickel B.E., Roth S.Y., Cook R.G., Allis C.D., Davie J.R. Changes in the histone H2A variant H2A.Z and polyubiquitinated histone species in developing trout testis. Biochemistry 1987, 26: 4417–4421.

    Article  CAS  PubMed  Google Scholar 

  11. Baarends W.M., Hoogerbrugge J.W., Roest H.P., Ooms M., Vreeburg J., Hoeijmakers J.H.J., Grootegoed J.A. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol. 1999, 207: 322–333.

    Article  CAS  PubMed  Google Scholar 

  12. Nickel B.E., Allis C.D., Davie J.R. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 1989, 28: 958–963.

    Article  CAS  PubMed  Google Scholar 

  13. Li W., Nagaraja S., Delcuve G.P., Hendzel M.J., Davie J.R. Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem. J. 1993, 296: 737–744.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Wing S.S., Jain P. Molecular cloning, expression and characterization of a ubiquitin enzyme (E217kD) highly expressed in rat testis. Biochem. J. 1995, 305: 125–132.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Koken M.H.M., Hoogerbrugge J.W., Jaspers-Dekker I., de Wit J., Willemsen R., Roest H.P., Grootegoed J.A., Hoeijmakers J.H.J. Expression of the ubiquitin-conjugating DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin modification. Dev. Biol. 1996, 173: 119–132.

    Article  CAS  PubMed  Google Scholar 

  16. Kovalenko O.V., Plug A.W., Haaf T., Gonda D.K., Ashley T., Ward D.C., Radding C.M., Golub E.I. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc. Natl. Acad. Sci. USA 1996, 93: 2958–2963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wing S.S., Bédard N., Morales C., Hingamp P., Trasler J. A novel rat homolog of the Saccharomyces cerevisiae ubiquitin-conjugating enzymes UBC4 and UBC5 with distinct biochemical features is induced during spermatogenesis. Mol. Cell. Biol. 1996, 16: 4064–4072.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Yamaguchi T., Kim N.S., Sekine S., Seino H., Osaka F., Yamao F., Kato S. Cloning and expression of cDNA encoding a human ubiquitin-conjugating enzyme similar to the Drosophila bendless gene product. J. Biochem. 1996, 120: 494–497.

    Article  CAS  PubMed  Google Scholar 

  19. Yasugi T., Howley P.M. Identification of the structural and functional human homolog of the yeast ubiquitin-conjugating enzyme UBC9. Nucleic Acids Res. 1996, 24: 2005–2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hendriksen P.J.M., Hoogerbrugge J.W., Themmen A.P.N., Koken M.H.M., Hoeijmakers J.H.J., Oostra B.A., Van der Lende T., Grootegoed J.A. Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse. Dev. Biol. 1995, 170: 730–733.

    Article  CAS  PubMed  Google Scholar 

  21. Odorisio T., Mahadevaiah S.K., McCarrey J.R., Burgoyne P.S. Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are coexpressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes. Dev. Biol. 1996, 180: 336–343.

    Article  CAS  PubMed  Google Scholar 

  22. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P.O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science 1998, 282: 699–705.

    Article  CAS  PubMed  Google Scholar 

  23. Rajapurohitam V., Morales C.R., El-Alfy M., Lefrancois S., Bedard N., Wing S.S. Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev. Biol. 1999, 212: 217–228.

    Article  CAS  PubMed  Google Scholar 

  24. Tipler C.P., Hutchon S.P., Hendil K., Tanaka K., Fishel S., Mayer R.J. Purification and characterization of 26S proteasomes from human and mouse spermatozoa. Mol. Hum. Reprod. 1997, 3: 1053–1060.

    Article  CAS  PubMed  Google Scholar 

  25. Fuji G., Tashiro K., Emori Y., Saiko K., Shiokawa K. Molecular cloning of cDNAs for two Xenopus proteasome subunits and their expression in adult tissues. Biochim. Biophys. Acta 1993, 1216: 65–72.

    Article  Google Scholar 

  26. Yuan X., Miller M., Belote J.M. Duplicated proteasome subunit genes in Drosophila melanogaster encoding testis-specific isoforms. Genetics 1996, 144: 147–157.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Cenci G., Rawson R.B., Belloni G., Castrillon D.H., Tudor M., Petrucci R., Goldberg M.L., Wasserman S. A., Gatti M. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev. 1997, 11: 863–875.

    Article  CAS  PubMed  Google Scholar 

  28. Lilly M.A., de Cuevas M., Spradling A.C. Cyclin A associates with the fusome during germline cyst formation in the Drosophila ovary. Dev. Biol. 2000, 218: 53–63.

    Article  CAS  PubMed  Google Scholar 

  29. Callaghan M.J., Russell A.J., Woollatt E., Sutherland G.R., Sutherland R.L., Watts C.K. Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs. Oncogene 1998, 17: 3479–3491.

    Article  CAS  PubMed  Google Scholar 

  30. Mansfield E., Hersperger E., Biggs J., Shearn A. Genetic and molecular analysis of hyperplastic discs, a gene whose product is required for regulation of cell proliferation in Drosophila melanogaster imaginal discs and germ cells. Dev. Biol. 1994, 165: 507–526.

    Article  CAS  PubMed  Google Scholar 

  31. Lawrence C. The RAD6 repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 1994, 16: 253–258.

    Article  CAS  PubMed  Google Scholar 

  32. Woodgate R. A plethora of lesion-replicating DNA polymerases. Genes Dev. 1999, 13: 2191–2195.

    Article  CAS  PubMed  Google Scholar 

  33. Robzyk K., Recht J., Osley M.A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 2000, 287: 501–504.

    Article  CAS  PubMed  Google Scholar 

  34. Lorick K.L., Jensen J.P., Fang S., Ong A.M., Hatakeyama S., Weissman A.M. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 1999, 96: 11364–11369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. van der Laan R., Roest H., Hoogerbrugge J., Smit E., Slater R., Baarends W., Hoeijmakers J., Grootegoed J. Characterization of mRAD18Sc, a mouse homolog of the yeast post-replication repair gene RAD18. Genomics 2000, in press.

    Google Scholar 

  36. Broomfield S., Chow B.L., Xiao W. MMS2, encoding a ubiquitin-conjugating-enzymelike protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. USA 1998, 95: 5678–5683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hofmann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999, 96: 645–653.

    Article  CAS  PubMed  Google Scholar 

  38. Shen Z., Pardington-Purtymun P.E., Comeaux J.C., Moyzis R.K., Chen D.J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 1996, 36: 271–279.

    Article  CAS  PubMed  Google Scholar 

  39. Kim K.I., Baek S.H., Jeon Y.J., Nishimori S., Suzuki T., Uchida S., Shimbara N., Saitoh H., Tanaka K. Chung C.H. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem. 2000, 275: 14102–14106.

    Article  CAS  PubMed  Google Scholar 

  40. Li W., Hesabi B., Babbo A., Pacione C., Liu J., Chen D.J., Nickoloff J.A., Shen Z. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res. 2000, 28: 1145–1153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Scully R., Chen J., Plug A.W., Xiao Y., Weaver D., Feunteun J., Ashley T., Livingston D.M. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 1997, 88: 265–275.

    Article  CAS  PubMed  Google Scholar 

  42. Welcsh P.L., Owens K.N., King M.C. Insights into the functions of BRCA1 and BRCA2. Trends Genet. 2000, 16: 69–74.

    Article  CAS  PubMed  Google Scholar 

  43. Jensen D.E., Proctor M., Marquis S.T., Gardner H.P., Ha S.I., Chodosh L.A., Ishov A.M., Tommerup N., Vissing H., Sekido Y., Minna J., Borodovsky A., Schultz D.C., Wilkinson K.D., Maul G.G., Barlev N., Berger S.L., Prendergast G.C., Rauscher F.J. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 1998, 16: 1097–1112.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Baarends.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baarends, W.M., van der Laan, R. & Grootegoed, J.A. Specific aspects of the ubiquitin system in spermatogenesis. J Endocrinol Invest 23, 597–604 (2000). https://doi.org/10.1007/BF03343782

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343782

Key-words

Navigation