Skip to main content
Log in

iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. We aimed to find novel molecules as potential biomarkers for the early diagnosis of CRC. A serum-free conditioned medium was successfully collected from three pairs of CRC tissue and adjacent normal tissue. iTRAQ-based quantitative proteomic analysis was applied to compare the differences in secretome between primary CRC mucosa and adjacent normal mucosa. A total of 145 kinds of proteins were identified. Of these proteins, 29 were significantly different between CRC and normal tissue. Tropomyosin 2 β (TPM2) exhibited the most significant differences; as such, this protein was selected for further validation. Quantitative real-time PCR indicated that the mRNA expression of TPM2 significantly decreased in the CRC tissue compared with the paired adjacent normal tissue. Immunohistochemical analysis also confirmed that TPM2 was barely detected at protein levels in the CRC tissue. In summary, this study revealed potential molecules for future biomarker applications and provided an efficient approach for the differential analysis of cancer-associated secretome. TPM2 may be valuable for the early diagnosis of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87–108

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Zeng H, Zhang S, He J. Annual report on status of cancer in China, 2011. Chin J Cancer Res 2015; 27(1): 2–12

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith RA, Cokkinides V, Brawley OW. Cancer screening in the United States, 2008: a review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin 2008; 58(3): 161–179

    Article  PubMed  Google Scholar 

  4. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69–90

    Article  PubMed  Google Scholar 

  5. Jiang X, Wang Y, Wang H, Geng M, Liu YL. Typical symptoms of colorectal cancer and its influence in timely diagnosis. Natl J Med China (Zhonghua Yi Xue Za Zhi) 2013; 93(4): 275–279 (in Chinese)

    Google Scholar 

  6. He J, Efron JE. Screening for colorectal cancer. Adv Surg 2011; 45(1): 31–44

    Article  PubMed  Google Scholar 

  7. Moawad FJ, Maydonovitch CL, Cullen PA, Barlow DS, Jenson DW, Cash BD. CT colonography may improve colorectal cancer screening compliance. AJR Am J Roentgenol 2010; 195(5): 1118–1123

    Article  PubMed  Google Scholar 

  8. Parra-Blanco A, Gimeno-García AZ, Quintero E, Nicolás D, Moreno SG, Jiménez A, Hernández-Guerra M, Carrillo-Palau M, Eishi Y, López-Bastida J. Diagnostic accuracy of immunochemical versus guaiac faecal occult blood tests for colorectal cancer screening. J Gastroenterol 2010; 45(7): 703–712

    Article  CAS  PubMed  Google Scholar 

  9. Bhatti I, Patel M, Dennison AR, Thomas MW, Garcea G. Utility of postoperative CEA for surveillance of recurrence after resection of primary colorectal cancer. Int J Surg 2015; 16(Pt A):123–128

    Article  PubMed  Google Scholar 

  10. Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg Oncol 2009; 18(1): 15–24

    Article  PubMed  Google Scholar 

  11. Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 2001; 47(4): 624–630

    CAS  PubMed  Google Scholar 

  12. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 2005; 4(4): 409–418

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt A, Aebersold R. High-accuracy proteome maps of human body fluids. Genome Biol 2006; 7(11): 242

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu Z, Zhang Y, Niu Y, Li K, Liu X, Chen H, Gao C. A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PLoS ONE 2014; 9(8): e103910

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yao L, Lao W, Zhang Y, Tang X, Hu X, He C, Hu X, Xu LX. Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues. J Proteome Res 2012; 11(6): 3281–3294

    Article  CAS  PubMed  Google Scholar 

  16. de Wit M, Kant H, Piersma SR, Pham TV, Mongera S, van Berkel MP, Boven E, Pontén F, Meijer GA, Jimenez CR, Fijneman RJ. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteomics 2014; 99: 26–39

    Article  PubMed  Google Scholar 

  17. Tang HY, Ali-Khan N, Echan LA, Levenkova N, Rux JJ, Speicher DW. A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 2005; 5(13): 3329–3342

    Article  CAS  PubMed  Google Scholar 

  18. Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GB, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005; 5(13): 3262–3277

    Article  CAS  PubMed  Google Scholar 

  19. Fang X, Zhang WW. Affinity separation and enrichment methods in proteomic analysis. J Proteomics 2008; 71(3): 284–303

    Article  CAS  PubMed  Google Scholar 

  20. Xiao T, Ying W, Li L, Hu Z, Ma Y, Jiao L, Ma J, Cai Y, Lin D, Guo S, Han N, Di X, Li M, Zhang D, Su K, Yuan J, Zheng H, Gao M, He J, Shi S, Li W, Xu N, Zhang H, Liu Y, Zhang K, Gao Y, Qian X, Cheng S. An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics 2005; 4(10): 1480–1486

    Article  CAS  PubMed  Google Scholar 

  21. Lou X, Xiao T, Zhao K, Wang H, Zheng H, Lin D, Lu Y, Gao Y, Cheng S, Liu S, Xu N. Cathepsin D is secreted from M-BE cells: its potential role as a biomarker of lung cancer. J Proteome Res 2007; 6(3): 1083–1092

    Article  CAS  PubMed  Google Scholar 

  22. Li M, Xiao T, Zhang Y, Feng L, Lin D, Liu Y, Mao Y, Guo S, Han N, Di X, Zhang K, Cheng S, Gao Y. Prognostic significance of matrix metalloproteinase-1 levels in peripheral plasma and tumour tissues of lung cancer patients. Lung Cancer 2010; 69(3): 341–347

    Article  PubMed  Google Scholar 

  23. Polisetty RV, Gautam P, Sharma R, Harsha HC, Nair SC, Gupta MK, Uppin MS, Challa S, Puligopu AK, Ankathi P, Purohit AK, Chandak GR, Pandey A, Sirdeshmukh R. LC-MS/MS analysis of differentially expressed glioblastoma membrane proteome reveals altered calcium signaling and other protein groups of regulatory functions. Mol Cell Proteomics 2012; 11(6): 013565

    Article  PubMed  Google Scholar 

  24. Albrethsen J, Bøgebo R, Gammeltoft S, Olsen J, Winther B, Raskov H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer 2005; 5(1): 8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ward DG, Suggett N, Cheng Y, Wei W, Johnson H, Billingham LJ, Ismail T, Wakelam MJ, Johnson PJ, Martin A. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 2006; 94(12): 1898–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Noo ME, Mertens BJ, Ozalp A, Bladergroen MR, van der Werff MP, van de Velde CJ, Deelder AM, Tollenaar RA. Detection of colorectal cancer using MALDI-TOF serum protein profiling. Eur J Cancer 2006; 42(8): 1068–1076

    Article  PubMed  Google Scholar 

  27. Pavlou MP, Diamandis EP. The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 2010; 73(10): 1896–1906

    Article  CAS  PubMed  Google Scholar 

  28. Xue H, Lü B, Zhang J, Wu M, Huang Q, Wu Q, Sheng H, Wu D, Hu J, Lai M. Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J Proteome Res 2010; 9(1): 545–555

    Article  CAS  PubMed  Google Scholar 

  29. Volmer MW, Stühler K, Zapatka M, Schöneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 2005; 5(10): 2587–2601

    Article  CAS  PubMed  Google Scholar 

  30. Shi HJ, Stubbs R, Hood K. Characterization of de novo synthesized proteins released from human colorectal tumour explants. Electrophoresis 2009; 30(14): 2442–2453

    Article  CAS  PubMed  Google Scholar 

  31. Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A, Fukayama M. Periostin is expressed in pericryptal fibroblasts and cancerassociated fibroblasts in the colon. J Histochem Cytochem 2008; 56(8): 753–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ben QW, Zhao Z, Ge SF, Zhou J, Yuan F, Yuan YZ. Circulating levels of periostin may help identify patients with more aggressive colorectal cancer. Int J Oncol 2009; 34(3): 821–828

    CAS  PubMed  Google Scholar 

  33. Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 2004; 5(4): 329–339

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Wang K, Zhang J, Liu SS, Dai L, Zhang JY. Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J Proteome Res 2011; 10(6): 2863–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang HY, Beer LA, Tanyi JL, Zhang R, Liu Q, Speicher DW. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer. J Proteomics 2013; 89: 165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li DQ, Wang L, Fei F, Hou YF, Luo JM, Zeng R, Wu J, Lu JS, Di GH, Ou ZL, Xia QC, Shen ZZ, Shao ZM. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 2006; 6(11): 3352–3368

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Xiao, T., Xu, Q. et al. iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer. Front. Med. 10, 278–285 (2016). https://doi.org/10.1007/s11684-016-0453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-016-0453-z

Keywords

Navigation