Skip to main content
Log in

Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs), which are found in innate immune cells, are essential mediators of rapid inflammatory responses and appropriate T-cell activation in response to infection and tissue damage. Accumulating evidence suggests that TLR signaling is involved in normal hematopoiesis and specific hematologic pathologies. Particular TLRs and their downstream signaling mediators are expressed not only in terminally differentiated innate immune cells but also in early hematopoietic progenitors. Sterile activation of TLR signaling is required to generate early embryonic hematopoietic progenitor cells. In adult animals, TLR signaling directly or indirectly promotes differentiation of myeloid cells at the expense of that of lymphoid cells and the self-renewal of hematopoietic stem cells during infection and tissue damage. Activating mutations of the MyD88 gene, which codes for a key adaptor involved in TLR signaling, are commonly detected in B-cell lymphomas and other B-cell hematopathologies. Dysregulated TLR signaling contributes to the pathogenesis of many hematopoietic disorders, including bone marrow failure, myelodysplastic syndrome, and acute myeloid leukemia. Complete elucidation of the molecular mechanisms by which TLR signaling mediates the regulation of both normal and pathogenic hematopoiesis will prove valuable to the development of targeted therapies and strategies for improved treatment of hematopoietic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805–820

    Google Scholar 

  2. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14(8): 546–558

    Article  CAS  PubMed  Google Scholar 

  4. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011; 332(6035): 1284–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yáñez A, Goodridge HS, Gozalbo D, Gil ML. TLRs control hematopoiesis during infection. Eur J Immunol 2013; 43(10): 2526–2533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5): 373–384

    Article  CAS  PubMed  Google Scholar 

  7. Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008; 29(2): 182–191

    Article  CAS  PubMed  Google Scholar 

  8. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335(6070): 859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 2007; 8(7): 772–779

    Article  CAS  PubMed  Google Scholar 

  10. Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 2013; 339(6126): 1426–1429

    Article  CAS  PubMed  Google Scholar 

  11. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162(7): 3749–3752

    CAS  PubMed  Google Scholar 

  12. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002; 169(1): 10–14

    Article  CAS  PubMed  Google Scholar 

  13. Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13(7): 933–940

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11(4): 443–451

    Article  CAS  PubMed  Google Scholar 

  15. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303(5663): 1526–1529

    Article  CAS  PubMed  Google Scholar 

  16. Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 2015; 22(2): 109–115

    Article  CAS  PubMed  Google Scholar 

  17. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee J O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130(6): 1071–1082

    Article  CAS  PubMed  Google Scholar 

  18. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO. Recognition of lipopeptide patterns by Tolllike receptor 2-Toll-like receptor 6 heterodimer. Immunity 2009; 31(6): 873–884

    Article  CAS  PubMed  Google Scholar 

  19. Leonard JN, Ghirlando R, Askins J, Bell JK, Margulies DH, Davies DR, Segal DM. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci USA 2008; 105(1): 258–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with doublestranded RNA. Science 2008; 320(5874): 379–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee J O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009; 458(7242): 1191–1195

    Article  CAS  PubMed  Google Scholar 

  22. Ulevitch RJ, Tobias PS. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 1999; 11(1): 19–22

    Article  CAS  PubMed  Google Scholar 

  23. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison J C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249(4975): 1431–1433

    Article  CAS  PubMed  Google Scholar 

  24. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189(11): 1777–1782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature 2008; 452(7184): 234–238

    Article  CAS  PubMed  Google Scholar 

  26. Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 2015

    Google Scholar 

  27. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 2006; 290(3): C917–C924

    Article  CAS  PubMed  Google Scholar 

  29. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8(5): 487–496

    Article  CAS  PubMed  Google Scholar 

  30. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418 (6894): 191–195

    Article  CAS  PubMed  Google Scholar 

  31. Luong M, Zhang Y, Chamberlain T, Zhou T, Wright JF, Dower K, Hall JP. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm (Lond) 2012; 9(1): 11

    Article  CAS  Google Scholar 

  32. Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Tolllike receptor (TLR)-4. Respir Res 2009; 10(1): 31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003; 301(5633): 640–643

    Article  CAS  PubMed  Google Scholar 

  34. Sheedy FJ, O’Neill LA. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol 2007; 82(2): 196–203

    Article  CAS  PubMed  Google Scholar 

  35. Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep 2014; 6: 97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008; 9(4): 361–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Carty M, Goodbody R, Schröder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 2006; 7(10): 1074–1081

    Article  CAS  PubMed  Google Scholar 

  38. Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 2010; 465 (7300): 885–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383(6599): 443–446

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi T, Walsh MC, Choi Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect 2004; 6 (14): 1333–1338

    Article  CAS  PubMed  Google Scholar 

  41. Han KJ, Su X, Xu LG, Bin LH, Zhang J, Shu H B. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-B activation and apoptosis pathways. J Biol Chem 2004; 279(15): 15652–15661

    Article  CAS  PubMed  Google Scholar 

  42. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434(7034): 772–777

    Article  CAS  PubMed  Google Scholar 

  43. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. Interferon-a induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004; 5(10): 1061–1068

    Article  CAS  PubMed  Google Scholar 

  44. Balkhi MY, Fitzgerald KA, Pitha PM. Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol 2008; 28(24): 7296–7308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 2005; 280(17): 17005–17012

    Article  CAS  PubMed  Google Scholar 

  46. Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-B and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-ß. Proc Natl Acad Sci USA 2004; 101(10): 3533–3538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis 2015; 20(2): 196–209

    Article  CAS  PubMed  Google Scholar 

  48. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 2013; 288(43): 31268–31279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, Kovtonyuk LV, McCoy KD, Hapfelmeier S, Ochsenbein AF, Manz MG, Slack E, Macpherson AJ. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 2014; 193(10): 5273–5283

    Article  CAS  PubMed  Google Scholar 

  50. He Q, Zhang C, Wang L, Zhang P, Ma D, Lv J, Liu F. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 2015; 125(7): 1098–1106

    Article  CAS  PubMed  Google Scholar 

  51. Sawamiphak S, Kontarakis Z, Stainier DY. Interferon signaling positively regulates hematopoietic stem cell emergence. Dev Cell 2014; 31(5): 640–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 2014; 28(23): 2597–2612

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Orelio C, Haak E, Peeters M, Dzierzak E. Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo. Blood 2008; 112(13): 4895–4904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 2006; 11(2): 171–180

    Article  CAS  PubMed  Google Scholar 

  55. Espín-Palazón R, Stachura DL, Campbell CA, García- Moreno D, Del Cid N, Kim AD, Candel S, Meseguer J, Mulero V, Traver D. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 2014; 159(5): 1070–1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Veldman MB, Lin S. Stem cells on fire: inflammatory signaling in HSC emergence. Dev Cell 2014; 31(5): 517–518

    Article  CAS  PubMed  Google Scholar 

  57. Cannistra SA, Griffin JD. Regulation of the production and function of granulocytes and monocytes. Semin Hematol 1988; 25 (3): 173–188

    CAS  PubMed  Google Scholar 

  58. Qiu P, Pan PC, Govind S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 1998; 125(10): 1909–1920

    CAS  PubMed  Google Scholar 

  59. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24(6): 801–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L, Defrance T. The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 2009; 23(11): 2063–2074

    Article  CAS  PubMed  Google Scholar 

  61. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-A in response to chronic infection. Nature 2010; 465(7299): 793–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Yáñez A, Murciano C, O'Connor JE, Gozalbo D, Gil ML. Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 2009; 11(4): 531–535

    Article  PubMed  CAS  Google Scholar 

  63. Yáñez A, Megí as J, O’Connor JE, Gozalbo D, Gil ML. Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling. PLoS ONE 2011; 6(9): e24761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, Humphrey MB, Yang Q, Borghesi LA, Kincade PW. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 2011; 186(9): 5367–5375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol 2014; 14(5): 302–314

    Article  CAS  PubMed  Google Scholar 

  66. Sioud M, Fløisand Y. TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. Eur J Immunol 2007; 37(10): 2834–2846

    Article  CAS  PubMed  Google Scholar 

  67. Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ, Borghesi LA, Farrar MA, Kincade PW. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 2008; 112(9): 3753–3761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Buechler MB, Teal TH, Elkon KB, Hamerman JA. Cutting edge: Type I IFN drives emergency myelopoiesis and peripheral myeloid expansion during chronic TLR7 signaling. J Immunol 2013; 190 (3): 886–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Megías J, Yáñez A, Moriano S, O’Connor JE, Gozalbo D, Gil ML. Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells 2012; 30(7): 1486–1495

    Article  PubMed  CAS  Google Scholar 

  70. Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stressinduced hematopoiesis. Cell Stem Cell 2014; 14(4): 445–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131(5): 994–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yáñez A, Hassanzadeh-Kiabi N, Ng MY, Megías J, Subramanian A, Liu GY, Underhill DM, Gil ML, Goodridge HS. Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur J Immunol 2013; 43(8): 2114–2125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT, Lagneaux L. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 2010; 71(3): 235–244

    Article  CAS  PubMed  Google Scholar 

  74. Romieu-Mourez R, François M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 2009; 182(12): 7963–7973

    Article  CAS  PubMed  Google Scholar 

  75. Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M, Heikenwalder M, Manz MG. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol 2012; 188(12): 5824–5828

    Article  CAS  PubMed  Google Scholar 

  76. Schürch CM, Riether C, Ochsenbein AF. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 2014; 14(4): 460–472

    Article  PubMed  CAS  Google Scholar 

  77. deWinter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009; 668(1–2): 11–19

    Article  CAS  Google Scholar 

  78. Vanderwerf SM, Svahn J, Olson S, Rathbun RK, Harrington C, Yates J, Keeble W, Anderson DC, Anur P, Pereira NF, Pilonetto DV, Pasquini R, Bagby GC. TLR8-dependent TNF-(α) overexpression in Fanconi anemia group C cells. Blood 2009; 114(26): 5290–5298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Garbati MR, Hays LE, Keeble W, Yates JE, Rathbun RK, Bagby GC. FANCA and FANCC modulate TLR and p38 MAPKdependent expresion of IL-1β in macrophages. Blood 2013; 122 (18): 3197–3205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Anur P, Yates J, Garbati MR, Vanderwerf S, Keeble W, Rathbun K, Hays LE, Tyner JW, Svahn J, Cappelli E, Dufour C, Bagby GC. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC-and FANCA-deficient mononuclear phagocytes. Blood 2012; 119(9): 1992–2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Béka’ssy AN, Scimè R, Pistorio A, Pistoia V. TNF-a and IFN-A are overexpressed in the bone marrow of Fanconi anemia patients and TNF-a suppresses erythropoiesis in vitro. Blood 2003; 102(6): 2053–2059

    Article  CAS  PubMed  Google Scholar 

  82. Bijangi-Vishehsaraei K, Saadatzadeh MR, Werne A, McKenzie KA, Kapur R, Ichijo H, Haneline LS. Enhanced TNF-a-induced apoptosis in Fanconi anemia type C-deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood 2005; 106(13): 4124–4130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Pang Q, Keeble W, Diaz J, Christianson TA, Fagerlie S, Rathbun K, Faulkner GR, O’Dwyer M, Bagby GC Jr. Role of doublestranded RNA-dependent protein kinase in mediating hypersensitivity of Fanconi anemia complementation group C cells to interferon a, tumor necrosis factor-a, and double-stranded RNA. Blood 2001; 97(6): 1644–1652

    Article  CAS  PubMed  Google Scholar 

  84. Pang Q, Keeble W, Christianson TA, Faulkner GR, Bagby GC. FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-/TNF-a-mediated cytotoxicity. EMBO J 2001; 20(16): 4478–4489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Pang Q, Christianson TA, Keeble W, Koretsky T, Bagby GC. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem 2002; 277(51): 49638–49643

    Article  CAS  PubMed  Google Scholar 

  86. Schultz JC, Shahidi NT. Tumor necrosis factor-a overproduction in Fanconi’s anemia. Am J Hematol 1993; 42(2): 196–201

    Article  CAS  PubMed  Google Scholar 

  87. Zhang X, Li J, Sejas DP, Rathbun KR, Bagby GC, Pang Q. The Fanconi anemia proteins functionally interact with the protein kinase regulated by RNA (PKR). J Biol Chem 2004; 279(42): 43910–43919

    Article  CAS  PubMed  Google Scholar 

  88. Li J, Sejas DP, Zhang X, Qiu Y, Nattamai KJ, Rani R, Rathbun KR, Geiger H, Williams DA, Bagby GC, Pang Q. TNF-a induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest 2007; 117(11): 3283–3295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38(2): 209–223

    Article  CAS  PubMed  Google Scholar 

  90. Young NS. Pathophysiologic mechanisms in acquired aplastic anemia. Hematology (Am Soc Hematol Educ Program) 2006; 2006 (1): 72–77

    Article  Google Scholar 

  91. Young NS, Bacigalupo A, Marsh JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant 2010; 16(1 Suppl): S119–S125

    Article  PubMed Central  PubMed  Google Scholar 

  92. Bagby GC, Fleischman AG. The stem cell fitness landscape and pathways of molecular leukemogenesis. Front Biosci (Schol Ed) 2011; 3(1): 487–500

    Article  Google Scholar 

  93. Leguit RJ, van den Tweel JG. The pathology of bone marrow failure. Histopathology 2010; 57(5): 655–670

    Article  PubMed  Google Scholar 

  94. Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood 2012; 120(6): 1185–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Afable MG 2nd, Wlodarski M, Makishima H, Shaik M, Sekeres MA, Tiu RV, Kalaycio M, O’Keefe CL, Maciejewski JP. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood 2011; 117(25): 6876–6884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol 2008; 15(3): 162–168

    Article  PubMed Central  PubMed  Google Scholar 

  97. Sloand EM, Rezvani K. The role of the immune system in myelodysplasia: implications for therapy. Semin Hematol 2008; 45 (1): 39–48

    Article  CAS  PubMed  Google Scholar 

  98. Parker CJ. Paroxysmal nocturnal hemoglobinuria. Curr Opin Hematol 2012; 19(3): 141–148

    Article  CAS  PubMed  Google Scholar 

  99. Cazzola M, Della Porta MG, Travaglino E, Malcovati L. Classification and prognostic evaluation of myelodysplastic syndromes. Semin Oncol 2011; 38(5): 627–634

    Article  CAS  PubMed  Google Scholar 

  100. Dimicoli S, Wei Y, Bueso-Ramos C, Yang H, Dinardo C, Jia Y, Zheng H, Fang Z, Nguyen M, Pierce S, Chen R, Wang H, Wu C, Garcia-Manero G. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS ONE 2013; 8(8): e71120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D, Pierce S, Jia Y, Zheng H, Wang H, Wang X, Nguyen M, Wang SA, Ebert B, Bejar R, Levine R, Abdel-Wahab O, Kleppe M, Ganan- Gomez I, Kantarjian H, Garcia-Manero G. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia 2013; 27(9): 1832–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res 2007; 13(4): 1154–1160

    Article  CAS  PubMed  Google Scholar 

  103. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002; 100 (10): 3553–3560

    Article  CAS  PubMed  Google Scholar 

  104. Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, Spinelli JJ, Eaves CJ, Eaves AC, Horsman DE, Lam WL, Karsan A. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with lowrisk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008; 112(8): 3412–3424

    Article  CAS  PubMed  Google Scholar 

  105. Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008; 111(3): 1534–1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, Mathews L, Ferrer M, Southall N, Guha R, Keller J, Thomas C, Beverly LJ, Cortelezzi A, Oliva EN, Cuzzola M, Maciejewski JP, Mulloy JC, Starczynowski DT. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 2013; 24(1): 90–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Gañán-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U, Garcia-Manero G. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 2015; 29(7): 1458–1469

    Article  PubMed  CAS  Google Scholar 

  108. Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Della Porta MG, Jädersten M, Killick S, Fidler C, Cazzola M, Hellström-Lindberg E, Wainscoat JS. Gene expression profiling of CD34+ cells in patients with the 5q-syndrome. Br J Haematol 2007; 139(4): 578–589

    Article  CAS  PubMed  Google Scholar 

  109. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med 2010; 16(1): 49–58

    Article  CAS  PubMed  Google Scholar 

  110. Keerthivasan G, Mei Y, Zhao B, Zhang L, Harris CE, Gao J, Basiorka AA, Schipma MJ, McElherne J, Yang J, Verma AK, Pellagatti A, Boultwood J, List AF, Williams DA, Ji P. Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood 2014; 124(5): 780–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. AbouZahr A, Saad Aldin E, Komrokji RS, Zeidan AM. Clinical utility of lenalidomide in the treatment of myelodysplastic syndromes. J Blood Med 2015; 6: 1–16

    Google Scholar 

  112. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55(3): 237–245

    Article  PubMed Central  PubMed  Google Scholar 

  114. Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling- Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 2013; 123(11): 4595–4611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 2009; 86(3): 557–566

    Article  CAS  PubMed  Google Scholar 

  116. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13(9): 1042–1049

    Article  CAS  PubMed  Google Scholar 

  117. Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res 2012; 35(8): 1297–1316

    Article  CAS  PubMed  Google Scholar 

  118. Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Tolllike receptors in cancer. Oncogene 2014; 33(27): 3485–3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 2013; 93(6): 847–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Coste I, Le Corf K, Kfoury A, Hmitou I, Druillennec S, Hainaut P, Eychene A, Lebecque S, Renno T. Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J Clin Invest 2010; 120(10): 3663–3667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 2006; 66(7): 3859–3868

    Article  CAS  PubMed  Google Scholar 

  122. Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, Kudo E, Shimada M, Sano T. High expression of Tolllike receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 2010; 102(5): 908–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, Spaczynski M, Whiteside TL. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 2009; 28(49): 4353–4363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Silasi DA, Alvero AB, Illuzzi J, Kelly M, Chen R, Fu HH, Schwartz P, Rutherford T, Azodi M, Mor G. MyD88 predicts chemoresistance to paclitaxel in epithelial ovarian cancer. Yale J Biol Med 2006; 79(3–4): 153–163

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, Zhu M, Fan X, Liang Y, Zhang L, Guo Y, Zhao J. Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res 2013; 19(11): 2905–2916

    Article  CAS  PubMed  Google Scholar 

  126. Je EM, Kim SS, Yoo NJ, Lee SH. Mutational and expressional analyses of MYD88 gene in common solid cancers. Tumori 2012; 98(5): 663–669

    CAS  PubMed  Google Scholar 

  127. Agúndez JA, García-Martín E, Devesa MJ, Carballo M, Martínez C, Lee-Brunner A, Fernández C, Díaz-Rubio M, Ladero JM. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 2012; 82(1): 35–40

    Article  PubMed  CAS  Google Scholar 

  128. Minmin S, Xiaoqian X, Hao C, Baiyong S, Xiaxing D, Junjie X, Xi Z, Jianquan Z, Songyao J. Single nucleotide polymorphisms of Toll-like receptor 4 decrease the risk of development of hepatocellular carcinoma. PLoS ONE 2011; 6(4): e19466

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Weng PH, Huang YL, Page JH, Chen JH, Xu J, Koutros S, Berndt S, Chanock S, Yeager M, Witte JS, Eeles RA, Easton DF, Neal DE, Donovan J, Hamdy FC, Muir KR, Giles G, Severi G, Smith JR, Balistreri CR, Shui IM, Chen YC. Polymorphisms of an innate immune gene, toll-like receptor 4, and aggressive prostate cancer risk: a systematic review and meta-analysis. PLoS ONE 2014; 9 (10): e110569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Vidas Z. Polymorphisms in Toll-like receptor genes—implications for prostate cancer development. Coll Antropol 2010; 34(2): 779–783

    CAS  PubMed  Google Scholar 

  131. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 2008; 105(2): 652–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Prieto J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol 2008; 48(2): 380–381

    Article  CAS  PubMed  Google Scholar 

  133. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317(5834): 121–124

    Article  CAS  PubMed  Google Scholar 

  134. Melkamu T, Qian X, Upadhyaya P, O’Sullivan MG, Kassie F. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer. Vet Pathol 2013; 50(5): 895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yusuf N, Nasti TH, Long JA, Naseemuddin M, Lucas AP, Xu H, Elmets CA. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res 2008; 68(2): 615–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Li X, Eckard J, Shah R, Malluck C, Frenkel K. Interleukin-1a upregulation in vivo by a potent carcinogen 7,12-dimethylbenz(a) anthracene (DMBA) and control of DMBA-induced inflammatory responses. Cancer Res 2002; 62(2): 417–423

    CAS  PubMed  Google Scholar 

  137. Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Yaghmaie M, Hadjati J. In vitro induction of potent tumor-specific cytotoxic T lymphocytes using TLR agonistactivated AML-DC. Target Oncol 2014; 9(3): 225–237

    Article  PubMed  Google Scholar 

  138. Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res 2014; 38(6): 673–681

    Article  CAS  PubMed  Google Scholar 

  139. Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Hadjati J. Synergistic effect of Toll-like receptor 4 and 7/8 agonists is necessary to generate potent blast-derived dendritic cells in acute myeloid leukemia. Leuk Res 2012; 36(9): 1193–1199

    Article  CAS  PubMed  Google Scholar 

  140. Li L, Reinhardt P, Schmitt A, Barth TF, Greiner J, Ringhoffer M, Döhner H, Wiesneth M, Schmitt M. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 2005; 54(7): 685–693

    Article  CAS  PubMed  Google Scholar 

  141. Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K, Wald DN. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 2015; 29(4): 918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Je EM, Yoo NJ, Lee SH. Absence of MYD88 gene mutation in acute leukemias and multiple myelomas. Eur J Haematol 2012; 88 (3): 273–274

    Article  CAS  PubMed  Google Scholar 

  143. Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-B and JNK is synergistic in TNF-expressing human AML. J Exp Med 2014; 211(6): 1093–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Liu X, Zhang J, Li J, Volk A, Breslin P, Zhang J, Zhang Z. The synergistic repressive effect of NF-κB and JNK inhibitor on the clonogenic capacity of Jurkat leukemia cells. PLoS ONE 2014; 9 (12): e115490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  145. Rhyasen GW, Bolanos L, Starczynowski DT. Differential IRAK signaling in hematologic malignancies. Exp Hematol 2013; 41 (12): 1005–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hamadeh F, MacNamara SP, Aguilera NS, Swerdlow SH, Cook JR. MYD88 L265P mutation analysis helps define nodal lymphoplasmacytic lymphoma. Mod Pathol 2015; 28(4): 564–574

    Article  CAS  PubMed  Google Scholar 

  147. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, Morra E, Trojani A, Greco A, Arcaini L, Varettoni M, Brown JR, Tai YT, Anderson KC, Munshi NC, Patterson CJ, Manning RJ, Tripsas CK, Lindeman NI, Treon SP. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulinMmonoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121(11): 2051–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Xu L, Hunter ZR, Yang G, Cao Y, Liu X, Manning R, Tripsas C, Chen J, Patterson CJ, Kluk M, Kanan S, Castillo J, Lindeman N, Treon SP. Detection of MYD88 L265P in peripheral blood of patients with Waldenström’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 2014; 28(8): 1698–1704

    Article  CAS  PubMed  Google Scholar 

  149. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, Corso A, Orlandi E, Bonfichi M, Gotti M, Pascutto C, Mangiacavalli S, Croci G, Fiaccadori V, Morello L, Guerrera ML, Paulli M, Cazzola M. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121 (13): 2522–2528

    Article  CAS  PubMed  Google Scholar 

  150. Jiménez C, Sebastián E, Chillón MC, Giraldo P, Mariano Herná ndez J, Escalante F, González-López TJ, Aguilera C, de Coca AG, Murillo I, Alcoceba M, Balanzategui A, Sarasquete ME, Corral R, Marín LA, Paiva B, Ocio EM, Gutiérrez NC, González M, San Miguel JF, García-Sanz R. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia. Leukemia 2013; 27(8): 1722–1728

    Article  PubMed  CAS  Google Scholar 

  151. Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 2012; 367(23): 2255–2256, author reply 2256–2257

    Article  CAS  PubMed  Google Scholar 

  152. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014; 123(18): 2791–2796

    Article  CAS  PubMed  Google Scholar 

  153. Treon SP, Hunter ZR. A new era for Waldenstrom macroglobulinemia: MYD88 L265P. Blood 2013; 121(22): 4434–4436

    Article  CAS  PubMed  Google Scholar 

  154. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012; 367(9): 826–833

    Article  CAS  PubMed  Google Scholar 

  155. Ansell SM, Hodge LS, Secreto FJ, Manske M, Braggio E, Price-Troska T, Ziesmer S, Li Y, Johnson SH, Hart SN, Kocher JP, Vasmatzis G, Chanan-Kahn A, Gertz M, Fonseca R, Dogan A, Cerhan JR, Novak AJ. Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma. Blood Cancer J 2014; 4(2): e183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, Bruno A, Jouvet A, Polivka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghesquières H, Gressin R, Delwail V, Taillandier L, Chinot O, Soubeyran P, Gyan E, Choquet S, Houillier C, Soussain C, Tanguy ML, Marie Y, Mokhtari K, Hoang-Xuan K. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res 2012; 18(19): 5203–5211

    Article  CAS  PubMed  Google Scholar 

  157. Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, Bassaganyas L, Baumann T, Juan M, López-Guerra M, Colomer D, Tubío JM, López C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernández JM, Puente DA, Freije JM, Velasco G, Gutiérrez-Fernández A, Costa D, Carrió A, Guijarro S, Enjuanes A, Hernández L, Yagüe J, Nicolás P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjosé S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpí JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigó R, Bayés M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, López-Guillermo A, Estivill X, Montserrat E, López-Otín C, Campo E. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475(7354): 101–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365(26): 2497–2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Trøen G, Warsame A, Delabie J. CD79B and MYD88 mutations in splenic marginal zone lymphoma. ISRN Oncol 2013; 2013: 252318

    PubMed Central  PubMed  Google Scholar 

  160. Yan Q, Huang Y, Watkins AJ, Kocialkowski S, Zeng N, Hamoudi RA, Isaacson PG, de Leval L, Wotherspoon A, Du MQ. BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica 2012; 97(4): 595–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller- Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470 (7332): 115–119

    Article  CAS  PubMed  Google Scholar 

  162. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, Patterson CJ, Buhrlage SJ, Gray N, Tai YT, Anderson KC, Hunter ZR, Treon SP. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood 2013; 122(7): 1222–1232

    Article  CAS  PubMed  Google Scholar 

  163. Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Sousa CR. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8a+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 2003; 33(4): 827–833

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Breslin S.J. or Jiwang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannova, J., Breslin S.J., P. & Zhang, J. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Front. Med. 9, 288–303 (2015). https://doi.org/10.1007/s11684-015-0412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-015-0412-0

Keywords

Navigation