Skip to main content
Log in

Non-invasive continuous blood pressure monitoring: a review of current applications

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Blood pressure monitoring has come a long way from the initial observations made by Reverend Hales in the 18th century. There are none that deny the importance of monitoring perioperative blood pressure; however, the limited ability of the current prevalent technology (oscillometric blood pressure monitoring) to offer continuous blood pressure measurements leaves room for improvement. Invasive monitoring is able to detect beat-to-beat blood pressure measurement, but the risks inherent to the procedure make it unsuitable for routine use except when this risk is outweighed by the benefits. This review focuses on the discoveries which have led up to the current blood pressure monitoring technologies, and especially the creation of those offering non-invasive but continuous blood pressure monitoring capabilities, including their methods of measurement and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Society of Anesthesiologists. Standards of the American Society of Anesthesiologists: Standards for Basic Anesthetic Monitoring.; Available from: http://www.asahq.org/For-Healthcare-Professionals/~/media/For%2520Members/documents/Standards%2520Guidelines%2520Stmts/Basic%2520Anesthetic%2520Monitoring%25202011.ashx (Accessed on January 12, 2012)

  2. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care 2011; 15(4): R197

    Article  PubMed  Google Scholar 

  3. Bijker JB, van Klei WA, Kappen TH, van Wolfswinkel L, Moons KG, Kalkman CJ. Incidence of intraoperative hypotension as a function of the chosen definition: literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology 2007; 107(2): 213–220

    Article  PubMed  Google Scholar 

  4. Bijker JB, Persoon S, Peelen LM, Moons KG, Kalkman CJ, Kappelle LJ, van Klei WA. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested casecontrol study. Anesthesiology 2012; 116(3): 658–664

    Article  PubMed  Google Scholar 

  5. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 2005; 100(1): 4–10

    Article  PubMed  Google Scholar 

  6. Saager L, Greenwald SD, Kelley SD, Schubert A, Sessler DI.. Duration of a “triple low” of blood pressure, BIS, and anesthestic concentration predicts poor outcome. Anesthesiology 2009; 111: A880

    Google Scholar 

  7. Tassoudis V, Vretzakis G, Petsiti A, Stamatiou G, Bouzia K, Melekos M, Tzovaras G. Impact of intraoperative hypotension on hospital stay in major abdominal surgery. J Anesth 2011; 25(4): 492–499

    Article  PubMed  Google Scholar 

  8. Ramsey M3rd. Blood pressure monitoring: automated oscillometric devices. J Clin Monit 1991; 7(1): 56–67

    Article  PubMed  Google Scholar 

  9. Smulyan H, Safar ME. Blood pressure measurement: retrospective and prospective views. Am J Hypertens 2011; 24(6): 628–634

    Article  PubMed  Google Scholar 

  10. Kroeker EJ, Wood EH. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res 1955; 3(6): 623–632

    Article  PubMed  CAS  Google Scholar 

  11. Bailey RH, Knaus VL, Bauer JH. Aneroid sphygmomanometers. An assessment of accuracy at a university hospital and clinics. Arch Intern Med 1991; 151(7): 1409–1412

    Article  PubMed  CAS  Google Scholar 

  12. Marks LA, Groch A. Optimizing cuff width for noninvasive measurement of blood pressure. Blood Press Monit 2000; 5(3): 153–158

    Article  PubMed  CAS  Google Scholar 

  13. Finnie KJ, Watts DG, Armstrong PW. Biases in the measurement of arterial pressure. Crit Care Med 1984; 12(11): 965–968

    Article  PubMed  CAS  Google Scholar 

  14. Glasser SP, Ramsey MR 3rd. An automated system for blood pressure determination during exercise. Circulation 1981; 63(2): 348–353

    Article  PubMed  CAS  Google Scholar 

  15. Bur A, Herkner H, Vlcek M, Woisetschläger C, Derhaschnig U, Delle Karth G, Laggner AN, Hirschl MM. Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients. Crit Care Med 2003; 31(3): 793–799

    Article  PubMed  Google Scholar 

  16. Alpert BS. Oscillometric blood pressure values are algorithmspecific. Am J Cardiol 2010; 106(10): 1524, author reply 1524–1525

    Article  PubMed  Google Scholar 

  17. Amoore JN, Geake WB, Scott DH. Oscillometric non-invasive blood pressure measurements: the influence of the make of instrument on readings? Med Biol Eng Comput 1997; 35(2): 131–134

    Article  PubMed  CAS  Google Scholar 

  18. Gorback MS, Quill TJ, Graubert DA. The accuracy of rapid oscillometric blood pressure determination. Biomed Instrum Technol 1990; 24(5): 371–374

    PubMed  CAS  Google Scholar 

  19. Sy WP. Ulnar nerve palsy possibly related to use of automatically cycled blood pressure cuff. Anesth Analg 1981; 60(9): 687–688

    Article  PubMed  CAS  Google Scholar 

  20. Bause GS, Weintraub AC, Tanner GE. Skin avulsion during oscillometry. J Clin Monit 1986; 2(4): 262–263

    Article  PubMed  CAS  Google Scholar 

  21. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 2002; 6(3): 199–204

    Article  PubMed  Google Scholar 

  22. Brzezinski M, Luisetti T, London MJ. Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg 2009; 109(6): 1763–1781

    Article  PubMed  Google Scholar 

  23. Hamilton WF, Dow P. An experimental study of the standing waves in the pulse propagated through the aorta. Am J Physiol 1938; (125): 48–59

    Google Scholar 

  24. O’Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol 2001; 51(6): 507–522

    Article  PubMed  Google Scholar 

  25. Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, Roman MJ, Safar ME, Segers P, Smulyan H. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension 2009; 54(2): 375–383

    Article  PubMed  CAS  Google Scholar 

  26. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H; European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588–2605

    Article  PubMed  Google Scholar 

  27. Lamia B, Chemla D, Richard C, Teboul JL. Clinical review: interpretation of arterial pressure wave in shock states. Crit Care 2005; 9(6): 601–606

    Article  PubMed  Google Scholar 

  28. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology 2011; 115(2): 231–241

    Article  PubMed  Google Scholar 

  29. Peňáz J. Photoelectric measurement of blood pressure, volume and flow in the finger. Digest of the 10th International Conference on Medical and Biological Engineering-Dresden, 1973

    Google Scholar 

  30. Imholz BP, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 1998; 38(3): 605–616

    Article  PubMed  CAS  Google Scholar 

  31. Wesseling KH, Settels JJ, van der Hoeven GM, Nijboer JA, Butijn MW, Dorlas JC. Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger. Cardiovasc Res 1985; 19(3): 139–145

    Article  PubMed  CAS  Google Scholar 

  32. Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Winter DC, Eckerle JS. Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology 1991; 75(2): 333–340

    Article  PubMed  CAS  Google Scholar 

  33. Hansen S, Staber M. Oscillometric blood pressure measurement used for calibration of the arterial tonometry method contributes significantly to error. Eur J Anaesthesiol 2006; 23(9): 781–787

    Article  PubMed  CAS  Google Scholar 

  34. Janelle GM, Gravenstein N. An accuracy evaluation of the T-Line Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients. Anesth Analg 2006; 102(2): 484–490

    Article  PubMed  Google Scholar 

  35. Dueck R, Goedje O, Clopton P. Noninvasive continuous beat-tobeat radial artery pressure via TL-200 applanation tonometry. J Clin Monit Comput 2012; 26(2): 75–83

    Article  PubMed  Google Scholar 

  36. Lane JD, Greenstadt L, Shapiro D, Rubinstein E. Pulse transit time and blood pressure: an intensive analysis. Psychophysiology 1983; 20(1): 45–49

    Article  PubMed  CAS  Google Scholar 

  37. Marie GV, Lo CR, Van Jones J, Johnston DW. The relationship between arterial blood pressure and pulse transit time during dynamic and static exercise. Psychophysiology 1984; 21(5): 521–527

    Article  PubMed  CAS  Google Scholar 

  38. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech 1983; 16(2): 141–152

    Article  PubMed  CAS  Google Scholar 

  39. Biais M, Vidil L, Roullet S, Masson F, Quinart A, Revel P, Sztark F. Continuous non-invasive arterial pressure measurement: evaluation of CNAP device during vascular surgery. Ann Fr Anesth Reanim 2010; 29(7–8): 530–535

    PubMed  CAS  Google Scholar 

  40. Imholz BP, van Montfrans GA, Settels JJ, van der Hoeven GM, Karemaker JM, Wieling W. Continuous non-invasive blood pressure monitoring: reliability of Finapres device during the Valsalva manoeuvre. Cardiovasc Res 1988; 22(6): 390–397

    Article  PubMed  CAS  Google Scholar 

  41. Lemson J, Hofhuizen CM, Schraa O, Settels JJ, Scheffer GJ, van der Hoeven JG. The reliability of continuous noninvasive finger blood pressure measurement in critically ill children. Anesth Analg 2009; 108(3): 814–821

    Article  PubMed  Google Scholar 

  42. Maggi R, Viscardi V, Furukawa T, Brignole M. Non-invasive continuous blood pressure monitoring of tachycardic episodes during interventional electrophysiology. Europace 2010; 12(11): 1616–1622

    Article  PubMed  Google Scholar 

  43. Hofhuizen CM, Lemson J, Hemelaar AE, Settels JJ, Schraa O, Singh SK, van der Hoeven JG, Scheffer GJ. Continuous non-invasive finger arterial pressure monitoring reflects intra-arterial pressure changes in children undergoing cardiac surgery. Br J Anaesth 2010; 105(4): 493–500

    Article  PubMed  CAS  Google Scholar 

  44. Jeleazcov C, Krajinovic L, Münster T, Birkholz T, Fried R, Schüttler J, Fechner J. Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. Br J Anaesth 2010; 105(3): 264–272

    Article  PubMed  CAS  Google Scholar 

  45. Eckert S, Horstkotte D. Comparison of Portapres non-invasive blood pressure measurement in the finger with intra-aortic pressure measurement during incremental bicycle exercise. Blood Press Monit 2002; 7(3): 179–183

    Article  PubMed  Google Scholar 

  46. Schramm C, Baat L, Plaschke K. Continuous noninvasive arterial pressure: assessment in older and high-risk patients under analgesic sedation. Blood Press Monit 2011; 16(6): 270–276

    Article  PubMed  Google Scholar 

  47. Hahn R, Rinösl H, Neuner M, Kettner SC. Clinical validation of a continuous non-invasive haemodynamic monitor (CNAP™; 500) during general anaesthesia. Br J Anaesth 2012 108(4):581–585

    Article  PubMed  CAS  Google Scholar 

  48. Ilies C, Bauer M, Berg P, Rosenberg J, Hedderich J, Bein B, Hinz J, Hanss R. Investigation of the agreement of a continuous noninvasive arterial pressure device in comparison with invasive radial artery measurement. Br J Anaesth 2012; 108(2): 202–210

    Article  PubMed  CAS  Google Scholar 

  49. Garnier RP, van der Spoel AG, Sibarani-Ponsen R, Markhorst DG, Boer C. Level of agreement between Nexfin non-invasive arterial pressure with invasive arterial pressure measurements in children. Br J Anaesth 2012; 109(4): 609–615

    Article  PubMed  CAS  Google Scholar 

  50. Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, Immink RV, Jöbsis DA, Hollmann MW, Lahpor JR, de Mol BA, van Lieshout JJ. Noninvasive continuous arterial blood pressure monitoring with Nexfin®. Anesthesiology 2012; 116(5): 1092–1103

    Article  PubMed  CAS  Google Scholar 

  51. Akkermans J, Diepeveen M, Ganzevoort W, van Montfrans GA, Westerhof BE, Wolf H. Continuous non-invasive blood pressure monitoring, a validation study of Nexfin in a pregnant population. Hypertens Pregnancy 2009; 28(2): 230–242

    Article  PubMed  CAS  Google Scholar 

  52. Eeftinck Schattenkerk DW, van Lieshout JJ, van den Meiracker AH, Wesseling KR, Blanc S, Wieling W, van Montfrans GA, Settels JJ, Wesseling KH, Westerhof BE. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am J Hypertens 2009; 22(4): 378–383

    Article  PubMed  Google Scholar 

  53. Tanaka H, Thulesius O, Yamaguchi H, Mino M, Konishi K. Continuous non-invasive finger blood pressure monitoring in children. Acta Paediatr 1994; 83(6): 646–652

    Article  PubMed  CAS  Google Scholar 

  54. Sipkens LM, Treskes K, Ariese-Beldman K, Veerman DP, Boer C. Application of Nexfin noninvasive beat-to-beat arterial blood pressure monitoring in autonomic function testing. Blood Press Monit 2011; 16(5): 246–251

    Article  PubMed  Google Scholar 

  55. Martina JR, Westerhof BE, Van Goudoever J, De Jonge N, Van Lieshout JJ, Lahpor JR, De Mol BA. Noninvasive blood pressure measurement by the Nexfin monitor during reduced arterial pulsatility: a feasibility study. ASAIO J 2010; 56(3): 221–227

    Article  PubMed  Google Scholar 

  56. Siebig S, Rockmann F, Sabel K, Zuber-Jerger I, Dierkes C, Brünnler T, Wrede CE. Continuous non-invasive arterial pressure technique improves patient monitoring during interventional endoscopy. Int J Med Sci 2009; 6(1): 37–42

    Article  PubMed  Google Scholar 

  57. Chen G, Chung E, Meng L, Alexander B, Vu T, Rinehart J, Cannesson M. Impact of non invasive and beat-to-beat arterial pressure monitoring on intraoperative hemodynamic management. J Clin Monit Comput 2012; 26(2): 133–140

    Article  PubMed  CAS  Google Scholar 

  58. Lu Z, Mukkamala R. Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis. J Appl Physiol 2006; 101(2): 598–608

    Article  PubMed  Google Scholar 

  59. Rang S, de Pablo Lapiedra B, van Montfrans GA, Bouma BJ, Wesseling KH, Wolf H. Modelflow: a new method for noninvasive assessment of cardiac output in pregnant women. Am J Obstet Gynecol 2007; 196(3): 235 e1–8

    Article  Google Scholar 

  60. Bogert LW, Wesseling KH, Schraa O, Van Lieshout EJ, de Mol BA, van Goudoever J, Westerhof BE, van Lieshout JJ. Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 2010; 65(11): 1119–1125

    Article  PubMed  CAS  Google Scholar 

  61. Broch O, Renner J, Gruenewald M, Meybohm P, Schöttler J, Caliebe A, Steinfath M, Malbrain M, Bein B. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia 2012; 67(4): 377–383

    Article  PubMed  CAS  Google Scholar 

  62. van der Spoel AG, Voogel AJ, Folkers A, Boer C, Bouwman RA. Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output. J Clin Anesth 2012; 24(4): 304–309

    Article  PubMed  Google Scholar 

  63. Chen G, Meng L, Alexander B, Tran NP, Kain ZN, Cannesson M. Comparison of noninvasive cardiac output measurements using the Nexfin monitoring device and the esophageal Doppler. J Clin Anesth 2012; 24(4): 275–283

    Article  PubMed  Google Scholar 

  64. Fischer MO, Avram R, Cârjaliu I, Massetti M, Gérard JL, Hanouz JL, Fellahi JL. Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br J Anaesth 2012; 109(4): 514–521

    Article  PubMed  CAS  Google Scholar 

  65. McCarthy T, Telec N, Dennis A, Griffiths J, Buettner A. Ability of non-invasive intermittent blood pressure monitoring and a continuous non-invasive arterial pressure monitor (CNAP™) to provide new readings in each 1-min interval during elective caesarean section under spinal anaesthesia. Anaesthesia 2012; 67(3): 274–279

    Article  PubMed  CAS  Google Scholar 

  66. Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Okamura A, Ishikawa T, Winter DC, Eckerle JS. Blood pressure measurement by arterial tonometry in controlled hypotension. Anesth Analg 1991; 73(1): 54–58

    Article  PubMed  CAS  Google Scholar 

  67. Sato T, Nishinaga M, Kawamoto A, Ozawa T, Takatsuji H. Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension 1993; 21(6 Pt 1): 866–874

    Article  PubMed  CAS  Google Scholar 

  68. Weiss BM, Spahn DR, Rahmig H, Rohling R, Pasch T. Radial artery tonometry: moderately accurate but unpredictable technique of continuous non-invasive arterial pressure measurement. Br J Anaesth 1996; 76(3): 405–411

    Article  PubMed  CAS  Google Scholar 

  69. Kemmotsu O, Ohno M, Takita K, Sugimoto H, Otsuka H, Morimoto Y, Mayumi T. Noninvasive, continuous blood pressure measurement by arterial tonometry during anesthesia in children. Anesthesiology 1994; 81(5): 1162–1168

    Article  PubMed  CAS  Google Scholar 

  70. Harasawa K, Yamane M, Morimoto Y, Kemmotsu O. Performance of a tonometer for arterial pressure measurement during anesthesia in the elderly. J Anesth 2004; 18(4): 316–317

    Article  PubMed  Google Scholar 

  71. Papaioannou TG, Stamatelopoulos KS, Gialafos E, Vlachopoulos C, Karatzis E, Nanas J, Lekakis J. Monitoring of arterial stiffness indices by applanation tonometry and pulse wave analysis: reproducibility at low blood pressures. J Clin Monit Comput 2004; 18(2): 137–144

    Article  PubMed  Google Scholar 

  72. O’Rourke MF, Seward JB. Central arterial pressure and arterial pressure pulse: new views entering the second century after Korotkov. Mayo Clin Proc 2006; 81(8): 1057–1068

    Article  PubMed  Google Scholar 

  73. O’Rourke MF, Adji A. An updated clinical primer on large artery mechanics: implications of pulse waveform analysis and arterial tonometry. Curr Opin Cardiol 2005; 20(4): 275–281

    Article  PubMed  Google Scholar 

  74. Saugel B, Fassio F, Hapfelmeier A, Meidert AS, Schmid RM, Huber W. The T-Line TL-200 system for continuous non-invasive blood pressure measurement in medical intensive care unit patients. Intensive Care Med 2012; 38(9): 1471–1477

    Article  PubMed  Google Scholar 

  75. Szmuk P, Pivalizza E, Warters RD, Ezri T, Gebhard R. An evaluation of the T-Line Tensymeter continuous noninvasive blood pressure device during induced hypotension. Anaesthesia 2008; 63(3): 307–312

    Article  PubMed  CAS  Google Scholar 

  76. Poon CC, Zhang YT. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. Conf Proc IEEE Eng Med Biol Soc 2005; 6: 5877–5880

    PubMed  CAS  Google Scholar 

  77. Ahlstrom C, Johansson A, Uhlin F, Länne T, Ask P. Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. J Artif Organs 2005; 8(3): 192–197

    Article  PubMed  Google Scholar 

  78. Fung P, Dumont G, Ries C, Mott C, Ansermino M. Continuous noninvasive blood pressure measurement by pulse transit time. Conf Proc IEEE Eng Med Biol Soc 2004; 1: 738–741

    PubMed  Google Scholar 

  79. Lansdorp B, Ouweneel D, de Keijzer A, van der Hoeven JG, Lemson J, Pickkers P. Non-invasive measurement of pulse pressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br J Anaesth 2011; 107(4): 540–545

    Article  PubMed  CAS  Google Scholar 

  80. Monnet X, Dres M, Ferré A, Le Teuff G, Jozwiak M, Bleibtreu A, Le Deley MC, Chemla D, Richard C, Teboul JL. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth 2012; 109(3): 330–338

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Cannesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, E., Chen, G., Alexander, B. et al. Non-invasive continuous blood pressure monitoring: a review of current applications. Front. Med. 7, 91–101 (2013). https://doi.org/10.1007/s11684-013-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-013-0239-5

Keywords

Navigation