Skip to main content
Log in

Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Adults with severe traumatic brain injury (TBI) often suffer poor social cognition. Social cognition is complex, requiring verbal, non-verbal, auditory, visual and affective input and integration. While damage to focal temporal and frontal areas has been implicated in disorders of social cognition after TBI, the role of white matter pathology has not been examined. In this study 17 adults with chronic, severe TBI and 17 control participants underwent structural MRI scans and Diffusion Tensor Imaging. The Awareness of Social Inference Test (TASIT) was used to assess their ability to understand emotional states, thoughts, intentions and conversational meaning in everyday exchanges. Track-based spatial statistics were used to perform voxelwise analysis of Fractional Anisotropy (FA) and Mean Diffusivity (MD) of white matter tracts associated with poor social cognitive performance. FA suggested a wide range of tracts were implicated in poor TASIT performance including tracts known to mediate, auditory localisation (planum temporale) communication between nonverbal and verbal processes in general (corpus callosum) and in memory in particular (fornix) as well as tracts and structures associated with semantics and verbal recall (left temporal lobe and hippocampus), multimodal processing and integration (thalamus, external capsule, cerebellum) and with social cognition (orbitofrontal cortex, frontopolar cortex, right temporal lobe). Even when controlling for non-social cognition, the corpus callosum, fornix, bilateral thalamus, right external capsule and right temporal lobe remained significant contributors to social cognitive performance. This study highlights the importance of loss of white matter connectivity in producing complex social information processing deficits after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamson, C., Yuan, W., Babcock, L., Leach, J. L., Seal, M. L., Holland, S. K., & Wade, S. L. (2013). Diffusion tensor imaging detects white matter abnormalities and associated cognitive deficits in chronic adolescent TBI. Brain Injury, 27(4), 454–463.

    Article  Google Scholar 

  • Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231–239. https://doi.org/10.1016/S0959-4388(00)00202-6.

    Article  CAS  Google Scholar 

  • Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience, 20(7), 2683–2690.

    Article  CAS  Google Scholar 

  • Alho, K., Rinne, T., Herron, T. J., & Woods, D. L. (2014). Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Hearing Research, 307, 29–41.

    Article  Google Scholar 

  • Alink, A., Euler, F., Kriegeskorte, N., Singer, W., & Kohler, A. (2012). Auditory motion direction encoding in auditory cortex and high-level visual cortex. Human Brain Mapping, 33(4), 969–978.

    Article  Google Scholar 

  • Babbage, D. R., Yim, J., Zupan, B., Neumann, D., Tomita, M. R., & Willer, B. (2011). Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology, 25(3), 277–285. https://doi.org/10.1037/a0021908.

    Article  PubMed  Google Scholar 

  • Baggio, H. C., Segura, B., Ibarretxe-Bilbao, N., Valldeoriola, F., Marti, M. J., Compta, Y., ... Junqué, C. (2012). Structural correlates of facial emotion recognition deficits in Parkinson's disease patients. Neuropsychologia, 50(8), 2121-2128. doi: https://doi.org/10.1016/j.neuropsychologia.2012.05.020

  • Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8(7), 333–344.

    Article  CAS  Google Scholar 

  • Bibby, H., & McDonald, S. (2005). Theory of mind after traumatic brain injury. Neuropsychologia, 43(1), 99–114.

    Article  Google Scholar 

  • Bigler, E. D. (2007). Anterior and middle cranial fossa in traumatic brain injury: relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515–531. https://doi.org/10.1037/0894-4105.21.5.515.

    Article  PubMed  Google Scholar 

  • Bigler, E. D., & Maxwell, W. L. (2011). Neuroimaging and Neuropathology of TBI. NeuroRehabilitation, 28, 1–12. https://doi.org/10.3233/NRE20110633.

    Article  Google Scholar 

  • Bigler, E. D., Andersob, C. V., & Blatter, D. D. (2002). Temporal Lobe Morphology in Normal Aging and Traumatic Brain Injury. American Journal of Neuroradiology, 23(2), 255–266.

    PubMed  Google Scholar 

  • Bond, M. R. (1976). Assessment of the psychosocial outcome of severe head injury. Acta Neurochirurgica, 34, 57–70.

    Article  CAS  Google Scholar 

  • Brooks, D. N., Campsie, L., Symington, C., Beattie, A., & McKinlay, W. (1986). The five year outcome of severe blunt head injury: A relative's view. Journal of Neurology. Neurosurgery & Psychiatry, 49(7), 764–770.

    Article  CAS  Google Scholar 

  • Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton Tests. San Antonio: Pearson PsychCorp Assessment.

    Google Scholar 

  • Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure & Function, 217(4), 783–796. https://doi.org/10.1007/s00429-012-0380-y.

    Article  Google Scholar 

  • Carrera, E., & Bogousslavsky, J. (2006). The thalamus and behaviour: effects of anatomically distinct strokes. Neurology, 66, 1817–1823.

    Article  Google Scholar 

  • Champagne-Lavau, M., & Joanette, Y. (2009). Pragmatics, theory of mind and executive functions after a right-hemisphere lesion: Different patterns of deficits. Journal of Neurolinguistics, 22(5), 413–426. https://doi.org/10.1016/j.jneuroling.2009.02.002.

    Article  Google Scholar 

  • Charbonneau, S., Scherzer, B. P., Aspirot, D., & Cohen, H. (2003). Perception and production of facial prosodic emotions by chronic CVA patients. Neuropsychologia, 41(5), 605–613.

    Article  CAS  Google Scholar 

  • Croker, V., & McDonald, S. (2005). Recognition of emotion from facial expression following traumatic brain injury. Brain Injury, 19, 787–789.

    Article  CAS  Google Scholar 

  • D'Argembeau, A., Ruby, P., Collette, F., Degueldre, C., Balteau, E., Luxen, A., ..., Salmon, E. (2007). Distinct Regions of the Medial Prefrontal Cortex Are Associated with Self-referential Processing and Perspective Taking. Journal of Cognitive Neuroscience, 19(6), 935-944. doi:https://doi.org/10.1162/jocn.2007.19.6.935

  • de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2010). Why don’t you feel how I feel? Insight into the absence of empathy after severe Traumatic Brain Injury. Neuropsychologia, 48, 3585–3595.

    Article  Google Scholar 

  • de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2011). Understanding deficits in empathy after traumatic brain injury: The role of affective responsivity. Cortex, 47(5), 526–535. https://doi.org/10.1016/j.cortex.2010.02.004.

    Article  PubMed  Google Scholar 

  • de Sousa, A., McDonald, S., & Rushby, J. (2012). Changes in emotional empathy, affective responsivity and behaviour following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology. https://doi.org/10.1080/13803395.2012.66706

  • Downey, L. E., Mahoney, C. J., Buckley, A. H., Golden, H. L., Henley, S. M., Schmitz, N., ..., Warren, J. D. (2015). White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration. Neuroimage: Clinical, 8, 640-651. doi: https://doi.org/10.1016/j.nicl.2015.06.005

  • Genova, H. M., Rajagopalan, V., Chiaravalloti, N., Binder, A., Deluca, J., & Lengenfelder, J. (2015). Facial affect recognition linked to damage in specific white matter tracts in traumatic brain injury. Social Neuroscience, 10(1), 27–34. https://doi.org/10.1080/17470919.2014.959618.

    Article  PubMed  Google Scholar 

  • Kinnunen, K. M., Greenwood, R., Powell, J. H., Leech, R., Hawkins, P. C., Bonnelle, V., ..., Sharp, D. J. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain: A Journal of Neurology, 134(2), 449-463. https://doi.org/10.1093/brain/awq347

  • Kinsella, G., Packer, S., & Olver, J. (1991). Maternal reporting of behaviour following very severe blunt head injury. Journal of Neurology, Neurosurgery & Psychiatry, 54(5), 422–426.

    Article  CAS  Google Scholar 

  • Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wagera, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. Neuroimage, 42, 998–1031.

    Article  Google Scholar 

  • Kraus, J. F., Black, M. A., Hessol, N., Ley, P., Rokaw, W., Sullivan, C., ... Marshall, L. (1984). The incidence of acute brain injury and serious impairment in a defined population. American Journal of Epidemiology, 119, 186-201.

  • Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J. R., & Piguet, O. (2016). On the right side? A longitudinal study of left-versus right-lateralized semantic dementia. Brain, 139(3), 986–998. https://doi.org/10.1093/brain/awv387.

    Article  PubMed  Google Scholar 

  • Leigh, R., Oishi, K., Hsu, J., Lindquist, M., Gottesman, R. F., Jarso, S., ... Hillis, A. E. (2013). Acute lesions that impair affective empathy. Brain: A Journal of Neurology, 136, 2539-2549.

  • Leunissen, I., Coxon, J. P., Caeyenberghs, K., Michiels, K., Sunaert, S., & Swinnen, S. P. (2014). Task switching in traumatic brain injury relates to cortico-subcortical integrity. Human Brain Mapping, 35(5), 2459–2469.

    Article  Google Scholar 

  • Lewis, R., & Noppeney, U. (2010). Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas. The Journal of Neuroscience, 30(37), 12329–12339.

    Article  CAS  Google Scholar 

  • Little, D. M., Kraus, M. F., Joseph, J., Geary, E. K., Susmaras, T., Zhou, X. J., ..., Gorelick, P. B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558-564. https://doi.org/10.1212/WNL.0b013e3181cff5d5

  • Maas, A. I. R., Stocchetti, N., & Bullock, R. (2008). Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 7(8), 728–741. https://doi.org/10.1016/s1474-4422(08)70164-9.

    Article  PubMed  Google Scholar 

  • Marsh, A. A., & Cardinale, E. M. (2014). When psychopathy impairs moral judgments: Neural responses during judgments about causing fear. Social Cognitive and Affective Neuroscience, 9(1), 3–11.

    Article  Google Scholar 

  • Martin-Rodriguez, J. F., & Leon-Carrion, J. (2010). Theory of mind deficits in patients with acquired brain injury: A quantitative review. Neuropsychologia, 48, 1181–1191. https://doi.org/10.1016/j.neuropsychologia.2010.02.009.

    Article  PubMed  Google Scholar 

  • McDonald, S., & Flanagan, S. (2004). Social Perception Deficits After Traumatic Brain Injury: Interaction Between Emotion Recognition, Mentalizing Ability, and Social Communication. Neuropsychology, 18(3), 572–579.

    Article  Google Scholar 

  • McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A New Clinical Tool for Assessing Social Perception after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18, 219–238.

    Article  Google Scholar 

  • McDonald, S., Rushby, J., Dalton, K., Landin-Romero, R., & Parkes, N. (2017). The role of the corpus callosum in social cognition deficits after Traumatic Brain Injury. Social Neuroscience, 1-9. https://doi.org/10.1080/17470919.2017.1356370

  • Mike, A., Strammer, E., Aradi, M., Orsi, G., Perlaki, G., Hajnal, A., ..., Illes, Z. (2013). Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study. PLoS One, 8(12), e82422. https://doi.org/10.1371/journal.pone.0082422

  • Olson, I. A., Olotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: a review of fiindings on social and emotional processing. Brain, 130, 1718–1731. https://doi.org/10.1093/brain/awm052.

    Article  PubMed  Google Scholar 

  • Palacios, E. M., Fernandez-Espejo, D., Junque, C., Sanchez-Carrion, R., Roig, T., Tormos, J. M., ..., Vendrell, P. (2011). Diffusion tensor imaging differences relate to memory deficits in diffuse traumatic brain injury. BMC Neurology, 11, 24. https://doi.org/10.1186/1471-2377-11-24

  • Perez, A. M., Adler, J., Kulkarni, N., Strain, J. F., Womack, K. B., Diaz-Arrastia, R., & Marquez de la Plata, C. D. (2014). Longitudinal white matter changes after traumatic axonal injury. Journal of Neurotrauma, 31(17), 1478–1485. https://doi.org/10.1089/neu.2013.3216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Society of Biological Psychiatry, 54, 504–514.

    Article  Google Scholar 

  • Pierpaoli, P., & Basser, P. (1996). Toward a quantitive assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36, 893–906.

    Article  CAS  Google Scholar 

  • Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816–847. https://doi.org/10.1016/j.neuroimage.2012.04.062.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reitan, R. M. (1992). Trail Making Test. Tuscon: Reitan Neuropsychological Laboratories.

    Google Scholar 

  • Ruby, P., & Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16(6), 988–999. https://doi.org/10.1162/0898929041502661.

    Article  PubMed  Google Scholar 

  • Rushby, J. A., McDonald, S., Fisher, A. C., Kornfeld, E. J., De Blasio, F. M., Parks, N., & Piguet, O. (2016). Brain volume contributes to arousal and empathy dysregulation following severe traumatic brain injury. Neuroimage: Clinical, 12, 607–614. https://doi.org/10.1016/j.nicl.2016.09.017.

    Article  Google Scholar 

  • Russell, W., & Smith, A. (1961). Post-traumatic amnesia in closed head injury. Archives of Neurology, 5, 16–29. https://doi.org/10.1001/archneur.1961.00450130006002.

    Article  Google Scholar 

  • Sacchetti, B., Scelfo, B., & Strata, P. (2009). Cerebellum and emotional behavior. Neuroscience, 162(3), 756–762. https://doi.org/10.1016/j.neuroscience.2009.01.064.

    Article  CAS  PubMed  Google Scholar 

  • Saldert, C., & Ahlsen, E. (2007). Inference in right hemisphere damaged individuals' comprehension: The role of sustained attention. Clinical Linguistics & Phonetics, 21(8), 637–655.

    Article  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (2006). Fibre pathways of the brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Shamay-Tsoory, S. G. (2011). The neural bases for empathy. The Neuroscientist, 17(1), 18–24. https://doi.org/10.1177/1073858410379268.

    Article  PubMed  Google Scholar 

  • Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., et al. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain, 131(Pt 2), 559–572. https://doi.org/10.1093/brain/awm294.

    Article  PubMed  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., ..., Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208-S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., ..., Behrens, T. E. J (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487-1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

  • Symington, S. H., Paul, L. K., Symington, M. F., Ono, M., & Brown, W. S. (2010). Social cognition in individuals with agenesis of the corpus callosum. Social Neuroscience, 5(3), 296–308.

    Article  Google Scholar 

  • Tate, R. L., Fenelon, B., Manning, M. L., & Hunter, M. (1991). Patterns of neuropsychological impairment after severe blunt head injury. Journal of Nervous and Mental Disease, 179, 117–126.

    Article  CAS  Google Scholar 

  • Tate, R. L., McDonald, S., & Lulham, J. L. (1998). Traumatic brain injury: Severity of injury and outcome in an Australian community. Australian and New Zealand Journal of Public Health, 22, 11–15.

    Article  Google Scholar 

  • Timmann, D., Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., & Kolb, F. P. (2010). The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex, 46(7), 845–857. https://doi.org/10.1016/j.cortex.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  • Tsivilis, D., Vann, S. D., Denby, C., Roberts, N., Mayes, A. R., Montaldi, D., & Aggleton, J. P. (2008). A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience, 11, 834–842.

    Article  CAS  Google Scholar 

  • Veeramuthu, V., Narayanan, V., Kuo, T. L., Delano-Wood, L., Chinna, K., Bondi, M. W., ..., Ramli, N. (2015). Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study. J Neurotrauma, 32 (19), 1497-1509. https://doi.org/10.1089/neu.2014.3750

  • Viano, D. C., Casson, I. R., Pellman, E. J., Zhang, E. J., King, A. I., & Yang, K. H. (2005). Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery, 57, 891–916.

    Article  Google Scholar 

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale-Third Edition (WAIS-III). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Williams, C., & Wood, R. L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259–267. https://doi.org/10.1080/13803390902976940.

    Article  PubMed  Google Scholar 

  • Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381–397. https://doi.org/10.1016/j.neuroimage.2014.01.060

  • Wood, R. L., & Williams, C. (2008). Inability to empathize following traumatic brain injury. Journal of the International Neuropsychological Society, 14, 289–296. https://doi.org/10.1017/S1355617708080326.

    Article  PubMed  Google Scholar 

  • Xiong, K., Zhu, Y., Zhang, Y., Yin, Z., Zhang, J., Qiu, M., & Zhang, W. (2014). White matter integrity and cognition in mild traumatic brain injury following motor vehicle accident. Brain Research, 1591, 86–92. https://doi.org/10.1016/j.brainres.2014.10.030.

    Article  CAS  PubMed  Google Scholar 

  • Zundorf, I. C., Karnath, H.-O., & Lewald, J. (2014). The effect of brain lesions on sound localization in complex acoustic environments. Brain: A Journal of Neurology, 137(5), 1410–1418.

    Article  Google Scholar 

Download references

Funding

KD was supported by an ARC Discovery Project 15010026. JR was supported by NHMRC Project Grant 1081923. RLR is supported by the ARC Centre of Excellence in Cognition and its Disorders Memory Node (CE11000102) and by the Appenzeller Neuroscience Fellowship in Alzheimer’s Disease. Additional support was provided from the NHMRC Centre of Research Excellence in Brain Recovery and a former ARC DP 1094083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skye McDonald.

Ethics declarations

Conflict of interest

SM receives royalties for The Awareness of Social Inference Test. There are no other conflicts to declare.

Ethical approval

All procedures performed were in accordance with the ethical standards of the Human Research Ethics Advisory Panel (HREAP approval reference 103,049) at the University of New South Wales and complied with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, S., Dalton, K.I., Rushby, J.A. et al. Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition. Brain Imaging and Behavior 13, 819–829 (2019). https://doi.org/10.1007/s11682-018-9906-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9906-0

Keywords

Navigation