Skip to main content
Log in

Hemodynamic and affective correlates assessed during performance on the Columbia Card Task (CCT)

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The study aimed to test the potential of functional near-infrared spectroscopy (fNIRS) in combination with electrodermal activity (EDA) in a decision paradigm by means of the Columbia Card Task (CCT). The CCT is a dynamic decision task characterized by assessing subjects’ risk-taking via eliciting voluntary stopping points in a series of incrementally increasingly risky choices. Using the combined fNIRS-EDA approach, we aim to examine the hemodynamic and affective correlates of both decision and outcome responses during performance on the CCT. Twenty healthy subjects completed the Cold and Hot CCT version while fNIRS over prefrontal cortex and EDA were recorded. Results showed that (1) in the decision phase fNIRS revealed larger total hemoglobin concentration changes [tHb] in the Cold as compared to the Hot CCT, whereas EDA revealed an opposite pattern with larger skin conductance responses (SCRs) to the Hot as compared to the Cold CCT. (2) No significant [tHb] signals or SCRs were found in the outcome phase. (3) Coherence calculations between fNIRS and EDA in the heart rate frequency showed a significant increase during the Hot as compared to the Cold CCT. Our findings designate fNIRS as suitable tool for monitoring decision-making processes. The combination of fNIRS and EDA demonstrates the potential of simultaneously assessing the interaction between hemodynamic and affective responses which can provide additional information concerning the relationship between these two physiological systems for various research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bechara, A., & Damasio, A. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52, 336–372.

    Article  Google Scholar 

  • Bechara, A., Damasio, A., Damasio, H., & Anderson, S. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Bechara, A., Tranel, D., & Damasio, H. (2000a). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 2189–2202.

    Article  PubMed  Google Scholar 

  • Bechara, A., Damasio, H., & Damasio, A. R. (2000b). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295–307. doi:10.1093/cercor/10.3.295.

    Article  CAS  PubMed  Google Scholar 

  • Benedek, M., & Kaernbach, C. (2010a). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47(4), 647–658.

    PubMed Central  PubMed  Google Scholar 

  • Benedek, M., & Kaernbach, C. (2010b). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80–91.

    Article  PubMed Central  PubMed  Google Scholar 

  • Boucsein, W. (1992). Electrodermal activity. New York, NY: Plenum Press.

    Book  Google Scholar 

  • Bradley, M. M. (2009). Natural selective attention: orienting and emotion. Psychophysiology, 46(1), 1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradley, M. M., & Lang, P. (2007) Emotion and motivation. In: Handbook of psychophysiology. Cambridge, MA: Cambridge University Press.

  • Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., & Markovitsch, H. (2005). Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: Associations with executive functions. Neuropsychology, 19(3), 267–277.

    Article  PubMed  Google Scholar 

  • Breiter, H., Aharon, I., Kahneman, D., Dale, A., & Shizgai, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30(2), 619–639.

    Article  CAS  PubMed  Google Scholar 

  • Cazzell, M., Li, L., Lin, Z., Patel, S., & Liu, H. (2012). Comparison of neural correlates of risk decision making between genders: An exploratory fNIRS study of the Balloon Analogue Risk Task (BART). NeuroImage, 62, 1896–1911.

    Article  PubMed  Google Scholar 

  • Chang, C., Cunningham, J. P., & Glover, G. (2009). Influence of heart rate on the BOLD signal: The cardiac response function. NeuroImage, 44, 857–869.

    Article  PubMed Central  PubMed  Google Scholar 

  • Falk, L., & Richardsson, A. (unpublished) Executive functions and adolescent risk taking—a dual system approach. Umeå University, Department of Psychology.

  • Fellows, L. (2007). Advances in understanding ventromedial prefrontal function: the accountant joins the executive. Neurology, 68(3), 991–995.

    Article  PubMed  Google Scholar 

  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935.

    Article  PubMed  Google Scholar 

  • Figner, B., & Murphy, R. O. (2010). Using skin conductance in judgment and decision making research. In M. Schulte-Mecklenbeck, A. Kuehberger, & R. Ranyard (Eds.). A handbook of process tracing methods for decision research (pp. 163–184). New York, NY: Psychology Press.

  • Figner, B., & Weber, E. (2011). Who takes risks when and why? Determinants of risk taking. Current Directions in Psychological Science, 20(4), 211–216.

    Article  Google Scholar 

  • Figner, B., Mackinlay, R., Wilkening, F., & Weber, E. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 709–730.

    PubMed  Google Scholar 

  • Fowles, D. C., Christie, M. J., Edelberg, R., Grings, W. W., Lykken, D. T., & Venables, P. H. (1981). Publication recommendations for electrodermal measurements. Psychophysiology, 18(3), 232–239. doi:10.1111/j.1469-8986.1981.tb03024.x.

    Article  CAS  PubMed  Google Scholar 

  • Frank, M., Cohen, M., & Sanfey, A. (2009). Multiple systems in decision making. Current Directions in Psychological Science, 18(2), 73–77.

    Article  Google Scholar 

  • Gagnon, L., Yücel, M. A., Dehaes, M., Cooper, R. J., Perdue, K. L., Selb, J., Huppert, T. J., et al. (2012). Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. NeuroImage, 59(4), 3933–3940.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grinsted, A., Moore, J., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566.

    Article  Google Scholar 

  • Grubb, R., Raichle, M., Eichling, J., & Ter-Pogossian, M. (1974). The effects of changes in PaCO2 cerebral blood volume, blood flow, and vascular mean transit time. Stroke, 5(5), 630–639.

    Article  PubMed  Google Scholar 

  • Harel, N., Lee, S., Nagaoka, T., Kim, D., & Kim, S. (2002). Origin of negative blood oxygenation level-dependent fMRI signals. Journal of Cerebral Blood Flow & Metabolism, 22(8), 908–917.

    Article  Google Scholar 

  • Holper, L., ten Brincke, R., Wolf, M., & Murphy, R. (2013) Hemodynamic and affective correlates of the Sequential Draw Task (SDT). (under review).

  • Holper, L., Wolf, M., & Tobler, P. (2013) Comparison of functional near-infrared spectroscopy and electrodermal activity in assessing objective versus subjective risk during risky financial decisions. (under review).

  • Huettel, S., Song, A., & McCarthy, G. (2005). Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. The Journal of Neuroscience, 25(13), 3304–3311.

    Article  CAS  PubMed  Google Scholar 

  • Huettel, S., Stowe, C., Gordon, E., Warner, B., & Platt, M. (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron, 49(5), 765–775.

    Article  CAS  PubMed  Google Scholar 

  • Jang, K., Tak, S., Jung, J., Jang, J., Jeong, Y., & Ye, J. (2009). Wavelet minimum description length detrending for near-infrared spectroscopy. Journal of Biomedical Optics, 14, 034004.

    Article  PubMed  Google Scholar 

  • Jaspers, H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.

    Google Scholar 

  • Jezzard, P., LeBihan, D., Cuenod, D., Pannier, L., Prinster, A., & Turner, R. (1993) An investigation of the contribution of physiological noise in human functional MRI studies at 1.5 tesla and 4 tesla. Proc SMRM, 12th Annual Meeting, 1392. New York, NY.

  • Jones, C., Minati, L., Harrison, N. A., Ward, J., & Critchley, H. (2011). Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk. PLoS ONE, 6(6), e20942.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahn, I., Yeshurun, Y., Rotshtein, P., Fried, I., Ben-Bashat, D., & Hendler, T. (2002). The role of the amygdala in signaling prospective outcome of choice. Neuron, 33(6), 983–994.

    Article  CAS  PubMed  Google Scholar 

  • Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review, 93(5), 1449–1475.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341–350.

    Article  Google Scholar 

  • Knutson, B., Taylor, J., Kaufmann, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. The Journal of Neuroscience, 25(19), 4806–4812.

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk, D. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making. Neuroscience & Biobehavioral Reviews, 26(6), 631–664.

    Article  Google Scholar 

  • Kuhnen, C., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47(5), 763–770.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, N., Jollant, F., O’Daly, Q., Zaleya, F., & Phillips, M. (2009). Distinct roles of prefrontal cortical subregions in the Iowa Gambling Task. Cerebral Cortex, 19(5), 1134–1143.

    Article  PubMed  Google Scholar 

  • Lejuez, C., Read, J., Kahler, C., Richards, J., Ramsey, S., Stuart, G., Strong, D., et al. (2002). Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). Journal of Experimental Psychology: Applied, 8(2), 75–84.

    CAS  PubMed  Google Scholar 

  • Levin, I., & Hart, S. (2003). Risk preferences in young children: Early evidence of individual differences in reaction to potential gains and losses. Journal of Behavioral Decision Making, 16(5), 397–413.

    Article  Google Scholar 

  • Levinson, D. F., & Edelberg, R. (1985). Scoring criteria for response latency and habituation in electrodermal research: A critique. Psychophysiology, 22(4), 417–426. doi:10.1111/j.1469-8986.1985.tb01626.x.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Lu, Z., D’Argembeau, A., Ng, M., & Bechara, A. (2010). The Iowa Gambling Task in fMRI images. Human Brain Mapping, 31, 410–423.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu, C.-M., Zhang, Y.-J., Biswal, B. B., Zang, Y.-F., Peng, D.-L., & Zhu, C.-Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of Neuroscience Methods, 186(2), 242–249.

    Article  PubMed  Google Scholar 

  • Oldfield, R. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Panno, A., Lauriola, M., & Figner, B. (2013). Emotion regulation and risk taking: Predicting risky choice in deliberative decision making. Cognition & Emotion, 27(2), 326–334.

    Article  Google Scholar 

  • Penolazzi, B., Gremigni, P., & Russo, P. (2012). Impulsivity and reward sensitivity differentially influence affective and deliberative risky decision making. Personality and Individual Differences, 53, 655–659.

    Article  Google Scholar 

  • Pinnegar, C., & Mansinha, L. (2003). The S-transform with windows of arbitrary and varying shape. Geophysics, 68(1), 381–385.

    Article  Google Scholar 

  • Pleskac, T. (2008). Decision making and learning while taking sequential risks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 167–185.

    PubMed  Google Scholar 

  • Preuschoff, K., Bossaerts, P., & Quartz, S. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Quaresima, V., Bisconti, S., & Ferrari, M. (2012). A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain and Language, 121(2), 79–89.

    Article  PubMed  Google Scholar 

  • Rao, H., Korcykowski, M., Pluta, J., Hoang, A., & Detre, J. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI study of the Balloon Analog Risk Task (BART). NeuroImage, 42(2), 902–910.

    Article  PubMed  Google Scholar 

  • Rogers, R., Owen, A., Middleton, H., Williams, E., Pickard, J., Sahakian, B., & Robbins, T. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19(20), 9029–9038.

    CAS  PubMed  Google Scholar 

  • Slovic, P. (1966). Risk-taking in children: Age and sex differences. Child Development, 37(1), 169–176.

    Article  Google Scholar 

  • Studer, B., & Clark, L. (2011). Place your bets: Psychophysiological correlates of decision-making under risk. Cognitive, Affective, & Behavioral Neuroscience, 11(2), 144–158.

    Article  Google Scholar 

  • Suhr, J., & Hammers, D. (2010). Who Fails the Iowa Gambling Test (IGT)? Personality, neuropsychological, and near-infrared spectroscopy findings in healthy young controls. Archives of Clinical Neuropsychology, 25(4), 293–302. doi:10.1093/arclin/acq017.

    Article  PubMed  Google Scholar 

  • Tak, S., Jang, J., Lee, K., & Ye, J. (2010). Quantification of CMRO(2) without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements. Physics in Medicine and Biology, 55(1), 3249–3269.

    Article  PubMed  Google Scholar 

  • Tak, S., Yoon, S., Jang, J., Yoo, K., Jeong, Y., & Ye, J. (2011). Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. NeuroImage, 55(1), 176–184.

    Article  PubMed  Google Scholar 

  • Tobler, P. N., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology, 97(2), 1621–1632.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515–518.

    Article  CAS  PubMed  Google Scholar 

  • Torrence, C., & Compo, G. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.

    Article  Google Scholar 

  • Villringer, A., & Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovascular and Brain Metabolism Reviews, 7, 240–276.

    CAS  PubMed  Google Scholar 

  • Worsley, K. J., & Friston, K. (1995). Analysis of fMRI time-series revisited—again. NeuroImage, 2(3), 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44(2), 428–447.

    Article  PubMed  Google Scholar 

  • Zhang, H., Zhang, Y.-J., Lu, C.-M., Ma, S.-Y., Zang, Y.-F., & Zhu, C.-Z. (2010). Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements. NeuroImage, 51(3), 1150–1161.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Bernd Figner for providing the software of the Columbia Card Task (CCT). The authors thank the Swiss Foundation for Grants in Biology and Medicine (SFGBM) and the Swiss National Science Foundation (SNSF) (Grant PASMP3_136987) for financial support.

Disclosure statement

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Holper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holper, L., Murphy, R.O. Hemodynamic and affective correlates assessed during performance on the Columbia Card Task (CCT). Brain Imaging and Behavior 8, 517–530 (2014). https://doi.org/10.1007/s11682-013-9265-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9265-9

Keywords

Navigation