Skip to main content
Log in

Genetic diversity and differentiation of the Dybowski’s frog (Rana dybowskii) in Northeast China

  • Research Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The genetic diversity and population structure of the Dybowski’s frog (Rana dybowskii) were investigated by using 11 polymorphic microsatellite loci. Total 75 individuals were sampled from six populations in Lesser Khingan Mountains and Changbai Mountains, China. Results showed that allele number of the 11 microsatellite loci was in the range of 2–10 in all populations, with the mean of 5.6. The average expected heterozygosity (H E) was 0.572, indicating a moderate polymorphism. The results of genetic differentiation coefficient (F ST) showed that population genetic differentiation was significant between Changbai and Lesser Khingan Mountains (p<0.001). This result was verified further by Nei’s genetic distance (D A) based on UPGMA phylogenetic trees and by AMOVA analysis. In conclusion, the populations distributed in Lesser Khingan Mountains and Changbai Mountain are proposed to be two distinct management units (MUs) for their protection and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott CL, Double MC. 2003. Genetic structure, consevation genetics and evidence of speciation by range expansion in shy and white-capped alba-trosses. Mol Ecol, 12: 2953–2962.

    Article  PubMed  Google Scholar 

  • Ardren WR, Borer S, Thrower F, Joyce JE, Kapuscinski AR. 1999. Inheritance of 12 microsatellite loci in Oncorhynchusmykiss. Journal of Heredity, 90: 529–536.

    Article  CAS  Google Scholar 

  • Arens P, Sluis Tvd, Westende WPCvt, Vosman B, Vos CC, Smulders MJM. 2007. Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Land-scape Ecol, 22: 1489–1500.

    Article  Google Scholar 

  • Boring AM. 1945. Chinese amphibians. Inst. Geobiologie Peking, 13: 96–100.

    Google Scholar 

  • Elphinstone MS, Hinten GN, Anderson MJ. 2003. An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes, 3: 317–320.

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online, 1: 47–50.

    CAS  PubMed  Google Scholar 

  • FicetolaI GF, Garner TWJ, Bernardi FD. 2007. Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei. Mol Ecol, 16: 1787–1797.

    Article  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW. 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol, 14: 483–496.

    Article  CAS  PubMed  Google Scholar 

  • Gou SW, Thompson EA. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48: 361–372.

    Article  Google Scholar 

  • Goudet J, 2001: FSTAT, version 2.9.3, A program to estimate and test gene diversities and fixation indices. http://www2.unil.ch/popgen/softwares/fstat.htm.

  • Hoffman EA, Ardren WR, Blouin MS. 2003. Nine polymorphic microsatellite loci for the northern leopard frog (Rana pipiens). Mol Ecol Notes, 3: 115–116.

    Article  CAS  Google Scholar 

  • Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Analytical and Bioanalytical Chemistry, 375: 985–993

    CAS  PubMed  Google Scholar 

  • Jiang Jianping, Zhou Kaiya. 2001. Phylogenetic relation of Chinese Brown Frogs inferred from mitochondrial DNA sequence of 12SrRNA gene. Zool Res, 1: 27–32.

    Google Scholar 

  • Jiang Jianping, Xie Feng, Zheng Zhonghua. 2002. Phylogenetic relationships of Chinese Brown Frogs with discussion on the karyotype evolution. Journal of Si-chuan University (Natural Science Edition), 39: 85–89.

    Google Scholar 

  • Julian SE, King TL. 2003. Novel tetranucleotide microsatellite DNA markers for the wood frog, Rana sylvatica. Mol Ecol Notes, 3: 256–258.

    Article  CAS  Google Scholar 

  • Knopp T, Cano JM, Pierre-André, Merilä CJ. 2007. Contrasting levels of variation in neutral and quantitative genetic loci on island populations of Moor Frogs (Rana arvalis). Conserv Genet, 8: 45–56.

    Article  Google Scholar 

  • Li Yiping, Zhang Jingang, Li Miao, Liu Chunmei, Jiang Dacheng, Deng Minglu. 2003. Study on the origin for oviduetus Ranae. China Journal of Chinese Materia Medica, 28: 16–17.

    CAS  Google Scholar 

  • Li Zhiwei, Yang Baotian, Bai Xiujan. 2009. Genetic diversity of from Changbaishan based on RAMP markers. Journal of Economic Animal, 13: 87–94.

    CAS  Google Scholar 

  • Luo Xueya, Li Jiakun. 1985. Comparative studies on karyotypes of Rana temporaria chensinensis from Harbin, Lanzhou and Hongyuan. Acta Herpetologica Sinica, 4: 5–12.

    Google Scholar 

  • Matsuba C, Merilä J. 2009. Isolation and characterization of 145 polymorphic microsatellite loci for the common frog (Rana temporaria). Mol Ecol Resour, 9: 555–562.

    Article  CAS  Google Scholar 

  • Monsen KJ, Blouin MS. 2003. Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial disconcordance. Mol Ecol, 12: 3275–3286.

    Article  CAS  PubMed  Google Scholar 

  • Moritz C. 1994. Defining evolutionarily significant units for conservation. Trends Ecol Evol, 9: 373–375.

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol, 19: 153–170.

    Article  CAS  PubMed  Google Scholar 

  • Newman RA, Squire T. 2001. Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol, 10: 1087–1100.

    Article  CAS  PubMed  Google Scholar 

  • Orlova EM, Bakjarev VA, Borkin LJ. 1977. Karyotypes of some brown frogs of Eurasia and a taxonmic analysis of karyotypes of the group. Proc Zool Inst, 74: 81–103.

    Google Scholar 

  • Paetkau D, Strobeck C. 1995. The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol, 4: 519–520.

    Article  CAS  PubMed  Google Scholar 

  • Pope CH. 1931. Notes on amphibians from Fukien, Hainan and other of China. Bull Amer Mus Nat Hist, 61: 78–85.

    Google Scholar 

  • Rousset F, Raymond M. 1995. Testing heterozygote excess and deficiency. Genetics, 140: 1413–1419.

    CAS  PubMed  Google Scholar 

  • Savage AE, Jaeger JR. 2009. Isolation and characterization of microsatellite markers in the lowland leopard frog (Rana yavapaiensis) and the relict leopard frog (R. onca), two declining frogs of the North American desert southwest. Mol Ecol Resour, 9: 199–202.

    Article  CAS  Google Scholar 

  • Shao Yongping, Guo Rui, Xia Qing, Wu Qianhong. 1999. Study on chromosome karyotype and Ag-band of Rana chensinensis David from Liaoning Province. Journal of Fudan University (Natural Sciences), 38: 557–560.

    Google Scholar 

  • Sota T, Sasabe M. 2006. Utility of nuclear alleIe networks for the analysis of closely related species in the genus carabus, subgenus ohomopterus. Syst Biol, 55: 329–344

    Article  PubMed  Google Scholar 

  • Stejneger L. 1925. Chinese amphibians and reptiles. Proceedings of the Na-tional Museum, 66: 19–23.

    Google Scholar 

  • Tian Xinggui, Feng Ying, Liu Yuwen. 2001. Preliminary study on respiration metabolism of Rana Chensinensis during hibernation. Journal of Xiangfan University, 22: 79–82.

    Google Scholar 

  • Wang Jingqi, Li Pipeng, Lu Yuyan, Dong Bingjun, Zhou Zhengyan, Yu Fenglan. 2006. Description and comparison of tadpoles of R. huanrenensis and R. dybowskii. Sichuan Journal of Zoology, 25: 349–353.

    Google Scholar 

  • Wei Gang, Chen Fuguan, Xu Ning, Li Dejun. 1991a. Study on chromosome karyotype and C-banding of Rana chensinensis kangdingensis and Rana chensinensis changbaishanensis. Sichuan Journal of Zoology, 10: 9–11.

    Google Scholar 

  • Wei Gang, Chen Fuguan, Xu Ning, Li Dejun. 1991b. New Subspecies of Rana Chensiensis from China. Acta Zool Sin, 16: 375–382.

    Google Scholar 

  • Weir BS, Cockerham CCE. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370.

    Article  Google Scholar 

  • Wright S. 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution, 19: 395–420.

    Article  Google Scholar 

  • Wu Hua, Hu Jie, Wan Qiuhong, Fang Shengguo, Liu Wuhua, Zhang Shuyan. 2008. Microsatellite polymorphisms and population genetic structure of sika deer in China. Acta Theriologica Sinica, 28: 109–116.

    Google Scholar 

  • Xiao Xiaohong, Zheng Dong, Li Feng, Liu Xuedong. 2001. Population genetic diversity and regional differentiation of Chinese forest frogs (Rana chensinensis) in Heilongjiang Province. Journal of Forestry Research, 11: 40–42.

    Google Scholar 

  • Xie Feng, Ye Changyuan, Fei Liang, Jiang Jianping, Zeng Xiaomao. 1999. Taxonomical studies on brown frogs (Rana) from Northeastern China (Amphibian: Ranidae). Acta Zool Sin, 2: 224–231.

    Google Scholar 

  • Xing Xiumei. 2006. Studies on molecular genetic diversity of deer or strains in China. Ph.D Dissertation, Chinese Academy of Agricultural Sciences.

  • Yang Xuegan, Wang Yiquan, Zhou Kaiya, Liu Zhongquan. 2001. Phylogenetic relationships of Chinese Brown Frogs (Rana) based on sequence of mitochondrial cytochrome b gene. Zool Res, 5: 345–350.

    Google Scholar 

  • Yu Lizhong, Kong Xiangwen, Li Wenchi. 2000. Breeding ecology of Chinese Brown Frog (Rana chensinensis). Journal of Liaoning Forestry Science and Technology, 2: 32–34.

    Google Scholar 

  • Zhan Aibin, Li Cheng, Fu Jinzhong. 2009. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China. BMC Genetics, 10: 1–10.

    Article  Google Scholar 

  • Zhang Zhiying, Li Dianwei, Zhao Wenge. 2008. The resting metabolic rate of the aerial respiration of Rana dybowskii and Rana amurensis. Chinese Journal of Wildlife, 29: 244–247.

    Google Scholar 

  • Zhao Zhengjie. 1982. Studies on ecology of the Rana temporaria chensinensis. Journal of Northeast Normal University, 3: 89–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-zhang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Jia, Xy., Ma, Yd. et al. Genetic diversity and differentiation of the Dybowski’s frog (Rana dybowskii) in Northeast China. Journal of Forestry Research 21, 239–245 (2010). https://doi.org/10.1007/s11676-010-0039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-010-0039-6

Keywords

Navigation