Skip to main content
Log in

Genetic variants in MMP9 and TCF2 contribute to susceptibility to lung cancer

  • Original Article
  • Published:
Chinese Journal of Cancer Research

Abstract

Objective|

The Wnt signaling pathway is crucial for pulmonary development and differentiation; dysregulation of the Wnt signaling pathway may impair lung function. Indeed, single nucleotide polymorphisms (SNPs) of Wnt pathway-related genes have been suggested as risk factors for certain types of cancers. In this study, we aimed to evaluate the influence of SNPs in Wnt-related genes (TCF2, MMP9) on susceptibility to lung cancer.

Methods

Polymorphisms of TCF2 rs4430796, MMP9 rs2250889, and MMP9 rs17576 were studied in Han Chinese subjects, including 135 patients with lung cancer and 176 controls, using the Sequenom MassARRAY platform. The association of genotypes with susceptibility to lung cancer was analyzed using odds ratio (OR), with 95% confidence interval (95% CI) and χ 2.

Results

The three SNPs (rs4430796, rs2250889, and rs17576) were found to be significantly associated with an increased risk of lung cancer. The AA genotype and AG+AA genotype of rs4430796 showed a significantly increased susceptibility to lung cancer compared with the GG genotype (adjusted OR=6.03, 95% CI: 1.30–28.09, P=0.022; 5.55, 95% CI: 1.20–25.58, P=0.028). Compared with the rs17576 GG genotype, the AG and AG+AA genotypes were also associated with a significant risk (adjusted OR=2.65, 95% CI: 1.60–4.37, P≤0.001; 2.57, 95% CI: 1.59–4.19, P≤0.001) whereas the rs2250889 CG and CG+GG genotypes had 2.97-fold (95% CI: 1.81–4.85; P≤0.001) and 2.80-fold increased associations with lung cancer (95% CI: 1.73–4.54; P≤0.001), respectively, compared with the rs2250889 CC genotype. Furthermore, the association of rs4430796 with lung cancer became insignificant (P>0.05) after adjusting for gender and rs2250889.

Conclusion

The three SNPs may play a role in the predisposition of members of the Han Chinese population to lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55:74–108.

    Article  PubMed  Google Scholar 

  2. Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest 2003; 123(1 Suppl):21S–49S.

    Article  PubMed  Google Scholar 

  3. Grimminger PP, Stöhlmacher J, Vallböhmer D, et al. Prognostic Significance and Clinicopathological Associations of COX-2 SNP in Patients with Nonsmall Cell Lung Cancer. J Oncol 2009; 2009:139590.

    PubMed  Google Scholar 

  4. Crosbie PA, McGown G, Thorncroft MR, et al. Association between lung cancer risk and single nucleotide polymorphisms in the first intron and codon 178 of the DNA repair gene, O6-alkylguanine-DNA alkyltransferase. Int J Cancer 2008; 122:791–795.

    Article  PubMed  CAS  Google Scholar 

  5. Yin Z, Su M, Li X, et al. ERCC2, ERCC1 polymorphisms and haplotypes, cooking oil fume and lung adenocarcinoma risk in Chinese non-smoking females. J Exp Clin Cancer Res 2009; 28:153.

    Article  PubMed  Google Scholar 

  6. Kiyohara C, Horiuchi T, Takayama K, et al. IL1B rs1143634 polymorphism, cigarette smoking, alcohol use, and lung cancer risk in a Japanese population. J Thorac Oncol 2010; 5:299–304.

    Article  PubMed  Google Scholar 

  7. Daniel VC, Peacock CD, Watkins DN. Developmental signaling pathways in lung cancer. Respirology 2006; 11:234–240.

    Article  PubMed  Google Scholar 

  8. Reynolds SD, Zemke AC, Giangreco A, et al. Conditional stabilization of beta-catenin expands the pool of lung stem cells. Stem Cells 2008; 26: 1337–1346.

    Article  PubMed  CAS  Google Scholar 

  9. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006; 25:7469–7481.

    Article  PubMed  CAS  Google Scholar 

  10. Pishvaian MJ, Byers SW. Biomarkers of Wnt signaling. Cancer Biomark 2007; 3:263–274.

    PubMed  CAS  Google Scholar 

  11. Nguyen DX, Chiang AC, Zhang XH, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 2009; 138:51–62.

    Article  PubMed  CAS  Google Scholar 

  12. Akiri G, Cherian MM, Vijayakumar S, et al. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene 2009; 28:2163–2172.

    Article  PubMed  CAS  Google Scholar 

  13. Pan KF, Liu WG, Zhang L, et al. Mutations in components of the Wnt signaling pathway in gastric cancer. World J Gastroenterol 2008; 14: 1570–1574.

    Article  PubMed  CAS  Google Scholar 

  14. Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist gene polymorphisms and renal cancer. Cancer 2009; 115:4488–4503.

    Article  PubMed  CAS  Google Scholar 

  15. Roose J, Clevers H. TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta 1999; 1424:M23–M37.

    PubMed  CAS  Google Scholar 

  16. Ulinski T, Bensman A, Lescure S. Abnormalities of hepatocyte nuclear factor (HNF)-1beta: biological mechanisms, phenotypes, and clinical consequences. Arch Pediatr 2009; 16:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  17. Terasawa K, Toyota M, Sagae S, et al. Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br J Cancer 2006; 94: 914–921.

    Article  PubMed  CAS  Google Scholar 

  18. Hu C, Perlmutter DH. Cell-specific involvement of HNF-1beta in alpha (1)-antitrypsin gene expression in human respiratory epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L757–L765.

    PubMed  CAS  Google Scholar 

  19. Topic AS, Jelic-Ivanovic ZD, Spasojevic-Kalimanovska VV, Spasic SM. Association of moderate alpha-1 antitrypsin deficiency with lung cancer in the Serbian population. Arch Med Res 2006; 37:866–870.

    Article  PubMed  CAS  Google Scholar 

  20. Rebouissou S, Vasiliu V, Thomas C, et al. Germline hepatocyte nuclear factor 1alpha and 1beta mutations in renal cell carcinomas. Hum Mol Genet 2005; 14:603–614.

    Article  PubMed  CAS  Google Scholar 

  21. Levin AM, Machiela MJ, Zuhlke KA, et al. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res 2008; 68: 6492–6495.

    Article  PubMed  CAS  Google Scholar 

  22. Wu B, Crampton SP, Hughes CC. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 2007; 26:227–239.

    Article  PubMed  CAS  Google Scholar 

  23. Sheu BC, Hsu SM, Ho HN, et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 2001; 61:237–242.

    PubMed  CAS  Google Scholar 

  24. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2:737–744.

    Article  PubMed  CAS  Google Scholar 

  25. Yu Q, Stamenkovic I. Cell surface-localized matrix metall- oproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14:163–176.

    PubMed  Google Scholar 

  26. Hu Z, Huo X, Lu D, et al. Functional polymorphisms of matrix metalloproteinase-9 are associated with risk of occurrence and metastasis of lung cancer. Clin Cancer Res 2005; 11:5433–5439.

    Article  PubMed  CAS  Google Scholar 

  27. Jin G, Miao R, Hu Z, et al. Putative functional polymorphisms of MMP9 predict survival of NSCLC in a Chinese population. Int J Cancer 2009; 124:2172–2178.

    Article  PubMed  CAS  Google Scholar 

  28. Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 2005; 38: 335–350.

    Article  PubMed  CAS  Google Scholar 

  29. Sun J, Zheng SL, Wiklund F, et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat Genet 2008; 40:1153–1155.

    Article  PubMed  CAS  Google Scholar 

  30. Wang C, Hu C, Zhang R, et al. Common variants of hepatocyte nuclear factor 1beta are associated with type 2 diabetes in a Chinese population. Diabetes 2009; 58:1023–1027.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang B, Henney A, Eriksson P, et al. Genetic variation at the matrix metalloproteinase-9 locus on chromosome 20q12.2-13.1. Hum Genet 1999; 105:418–423.

    Article  PubMed  CAS  Google Scholar 

  32. Wu J, Zhang L, Luo H, et al. Association of matrix metalloproteinases-9 gene polymorphisms with genetic susceptibility to esophageal squamous cell carcinoma. DNA Cell Biol 2008; 27:553–557.

    Article  PubMed  CAS  Google Scholar 

  33. Gohlke U, Gomis-Rüth FX, Crabbe T, et al. The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Lett 1996; 378:126–130.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Additional information

This work was supported by the Key Programs for Science and Technology Development of Guangzhou (No. 2008A1-E4151), the National “863” High Technology Research and Development Program of China (No. 2006AA02A311).

Contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Jz., Yang, Xx., Hu, Ny. et al. Genetic variants in MMP9 and TCF2 contribute to susceptibility to lung cancer. Chin. J. Cancer Res. 23, 183–187 (2011). https://doi.org/10.1007/s11670-011-0183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11670-011-0183-3

Key words

Navigation