Skip to main content

Advertisement

Log in

Tag SNPs of CFI contributed to the susceptibility for non-small cell lung cancer in Chinese population

  • Research Article
  • Published:
Tumor Biology

Abstract

Complement factor I (CFI) plays an important role in the development of non-small cell lung cancer (NSCLC). This study aims to examine the association of CFI genetic variants with the risk of developing NSCLC in Chinese population. A hospital-based case-control study was conducted in 470 patients with NSCLC and 470 controls in Chinese population. Totally, 13 tag single nucleotide polymorphisms (tag SNPs) of CFI were selected by Haploview software using the HapMap database. Genotyping was performed using iPLEX Gold Genotyping Assay and Sequenom MassARRAY. The odds ratios (ORs) and 95 % confidence interval (95 % CI) were calculated by logistic regression model. Our results showed that individuals with rs6822976 GG genotype had a significant decreased risk of NSCLC (OR = 0.64; 95 % CI = 0.42–0.98) when compared with rs6822976 AA genotype carriers. We also found that rs7671905 TT genotype exhibited a significant decreased risk of NSCLC compared with CC genotype with OR (95 % CI) of 0.55 (0.33–0.91). There was no significant association between other selected SNPs and the risk of NSCLC. When stratified by smoking status, the decreased risk of NSCLC was observed to be associated with the genotype with at least one rs6822976 G allele among non-smokers (OR = 0.66; 95 % CI = 0.47–0.93), but not among smokers (OR = 1.01; 95 % CI = 0.67–1.53). For CFI rs7671905 polymorphism, the individuals with at least one T allele have a decreased risk of NSCLC with OR (95 % CI) of 0.71 (0.51–0.99), but not among smokers (OR = 0.93; 95 % CI = 0.61–1.41). When stratified by age, we found that rs7671905 TT genotype has contributed to the decreased risk of NSCLC among older subjects with OR (95 % CI) of 0.46 (0.23–0.95), but not among younger subjects with OR (95 % CI) of 0.64 (0.31–1.34) (P interaction = 0.03). After stratifying by sex, our study showed that rs7671905 TT genotype was related to the risk of NSCLC among males (OR = 0.53; 95 % CI = 0.29–0.98), but not among females (OR = 0.62; 95 % CI = 0.25–1.57) (P interaction = 0.03). CFI genetic variants played an important role in the development of NSCLC in Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003;53:5–26.

    Article  PubMed  Google Scholar 

  3. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  4. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  5. Engels EA, Wu X, Gu J, Dong Q, Liu J, Spitz MR. Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res. 2007;67:6520–7.

    Article  CAS  PubMed  Google Scholar 

  6. Young RP, Hopkins RJ. Genetic variation in innate immunity and inflammation pathways associated with lung cancer risk. Cancer. 2013;119:1761.

    Article  CAS  PubMed  Google Scholar 

  7. Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Parsa AT. Cancer and the complement cascade. Mol Cancer Res. 2010;8:1453–65.

    Article  CAS  PubMed  Google Scholar 

  8. Ostrand-Rosenberg S. Cancer and complement. Nat Biotechnol. 2008;26:1348–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ollert MW, David K, Bredehorst R, Vogel CW. Classical complement pathway activation on nucleated cells. Role of factor H in the control of deposited C3b. J Immunol. 1995;155:4955–62.

    CAS  PubMed  Google Scholar 

  10. Pangburn MK, Pangburn KL, Koistinen V, Meri S, Sharma AK. Molecular mechanisms of target recognition in an innate immune system: interactions among factor H, C3b, and target in the alternative pathway of human complement. J Immunol. 2000;164:4742–51.

    Article  CAS  PubMed  Google Scholar 

  11. Lachmann PJ, Muller-Eberhard HJ. The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement. J Immunol. 1968;100:691–8.

    CAS  PubMed  Google Scholar 

  12. Zhou W. The new face of anaphylatoxins in immune regulation. Immunobiology. 2012;217:225–34.

    Article  CAS  PubMed  Google Scholar 

  13. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pio R, Corrales L, Lambris JD. The role of complement in tumor growth. Adv Exp Med Biol. 2014;772:229–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu X, Rao J, Lin J, Zhang Z, Cao L, Zhang X. Tag SNPs in complement receptor-1 contribute to the susceptibility to non-small cell lung cancer. Mol Cancer. 2014;13:56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Travis WD, Colby TV, Corri B, Shimosato Y, Brambilla E. Histological typing of lung and pleural tumours. 3rd ed. Berlin: Springer; 1999.

    Book  Google Scholar 

  17. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of ld and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  18. Ricklin D, Lambris JD. Complement-targeted therapeutics. Nat Biotechnol. 2007;25:1265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A. 2006;103:2328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPS) in tumors. Mol Immunol. 2003;40:109–23.

    Article  CAS  PubMed  Google Scholar 

  22. Yang AC. Long-term care for the elderly in Taiwan. Nurs Sci Q. 2002;15:252–6.

    PubMed  Google Scholar 

  23. Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT. The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res. 2010;59:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsiftsoglou SA, Willis AC, Li P, Chen X, Mitchell DA, Rao Z, et al. The catalytically active serine protease domain of human complement factor I. Biochemistry. 2005;44:6239–49.

    Article  CAS  PubMed  Google Scholar 

  25. Jozsi M, Zipfel PF. Factor H family proteins and human diseases. Trends Immunol. 2008;29:380–7.

    Article  CAS  PubMed  Google Scholar 

  26. Okroj M, Hsu YF, Ajona D, Pio R, Blom AM. Non-small cell lung cancer cells produce a functional set of complement factor I and its soluble cofactors. Mol Immunol. 2008;45:169–79.

    Article  CAS  PubMed  Google Scholar 

  27. Gauba V, Grunewald J, Gorney V, Deaton LM, Kang M, Bursulaya B, et al. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc Natl Acad Sci U S A. 2011;108:12821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kondo N, Bessho H, Honda S, Negi A. Additional evidence to support the role of a common variant near the complement factor I gene in susceptibility to age-related macular degeneration. Eur J Hum Genet. 2010;18:634–5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cipriani V, Matharu BK, Khan JC, Shahid H, Hayward C, Wright AF, et al. No evidence of association between complement factor I genetic variant rs10033900 and age-related macular degeneration. Eur J Hum Genet. 2012;20:1–2. author reply 3.

    Article  CAS  PubMed  Google Scholar 

  30. Ennis S, Gibson J, Cree AJ, Collins A, Lotery AJ. Support for the involvement of complement factor I in age-related macular degeneration. Eur J Hum Genet. 2010;18:15–6.

    Article  CAS  PubMed  Google Scholar 

  31. Kew RR, Ghebrehiwet B, Janoff A. Cigarette smoke can activate the alternative pathway of complement in vitro by modifying the third component of complement. J Clin Invest. 1985;75:1000–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boeckler P, Milea M, Meyer A, Uring-Lambert B, Heid E, Hauptmann G, et al. The combination of complement deficiency and cigarette smoking as risk factor for cutaneous lupus erythematosus in men: a focus on combined C2/C4 deficiency. Br J Dermatol. 2005;152:265–70.

    Article  CAS  PubMed  Google Scholar 

  33. Stern MC, Umbach DM, van Gils CH, Lunn RM, Taylor JA. DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2001;10:125–31.

    CAS  PubMed  Google Scholar 

  34. Radzikowska E, Roszkowski K, Glaz P. Lung cancer in patients under 50 years old. Lung Cancer. 2001;33:203–11.

    Article  CAS  PubMed  Google Scholar 

  35. Bromen K, Pohlabeln H, Jahn I, Ahrens W, Jockel KH. Aggregation of lung cancer in families: results from a population-based case–control study in Germany. Am J Epidemiol. 2000;152:497–505.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81101483 to X. Zhang), Program for New Century Excellent Talents in University (NCET-11-0933 to X. Zhang), Science Fund for Distinguished Young Scholars of Hebei Scientific Committee (2012401022 to X. Zhang), and Leader Talent Cultivation Plan of Innovation Team in Hebei Province (LJRC001 to X. Zhang).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Zhang.

Additional information

Y. Liu and Y. Bi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Bi, Y., Lin, J. et al. Tag SNPs of CFI contributed to the susceptibility for non-small cell lung cancer in Chinese population. Tumor Biol. 36, 1955–1962 (2015). https://doi.org/10.1007/s13277-014-2801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2801-4

Keywords

Navigation