Skip to main content
Log in

Experimental and Computational Studies of Atomic Mobilities for fcc Al-Co-Cr Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The interdiffusion behavior of ternary face-centered-cubic (fcc) Al-Co-Cr alloys has been studied by the diffusion-couple technique and CALculation of PHAse Diagram (CALPHAD) approach. The composition profiles of the fcc Al-Co-Cr diffusion couples at 1000 and 1200 °C were measured by using electron probe microanalysis (EPMA), followed by the extraction of interdiffusion coefficients through the Whittle-Green method. Based on the available thermodynamic description and diffusion coefficients in the literature as well as the experimental data obtained in the present work, the atomic mobilities of Al, Co, and Cr in fcc Al-Co-Cr alloys were assessed by means of the CALPHAD method. The diffusion coefficients, composition profiles and diffusion paths of fcc Al-Co-Cr alloys were calculated by adopting the atomic mobilities assessed in the present work, reaching a good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-Base High-Temperature Alloys, Science, 2006, 312(5770), p 90–91.

    Article  ADS  Google Scholar 

  2. Y. Li, F. Pyczak, M. Oehring, L. Wang, J. Paul, U. Lorenz, and Z. Yao, Thermal Stability of γ′ Phase in Long-term Aged Co-Al-W Alloys, J. Alloys. Compd., 2017, 729, p 266–276.

    Article  Google Scholar 

  3. Z.D. Liang, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, F. Pyczak, A. Stark, and L. Wang, Influence of Small Amounts of Si and Cr on the High Temperature Oxidation Behavior of Novel Cobalt Base Superalloys, Corros. Sci., 2021, 184, p 109388.

    Article  Google Scholar 

  4. X.D. Xu, P. Liu, A. Hirata, S.X. Song, T.G. Nieh, and M.W. Chen, Microstructural Origins for a Strong and Ductile Al0.1CoCrFeNi high-Entropy Alloy with Ultrafine Grains, Materialia., 2018, 4, p 395–405.

    Article  Google Scholar 

  5. S.K. Varma, F. Sanchez, S. Moncayo, and C.V. Ramana, Static and Cyclic Oxidation of Nb-Cr-V-W-Ta High Entropy Alloy in Air From 600 to 1400 °C, J. Mater. Sci. Technol., 2020, 38, p 189–196.

    Article  Google Scholar 

  6. N. Kumar, M. Fusco, M. Komarasamy, R.S. Mishra, M. Bourham, and K.L. Murty, Understanding Effect of 3.5 wt.% NaCl on the Corrosion of Al0.1CoCrFeNi High-Entropy Alloy, J. Nucl. Mater., 2017, 495, p 154–163.

    Article  ADS  Google Scholar 

  7. T. Gómez-Acebo, B. Navarcorena, and F. Castro, Interdiffusion in Multiphase, Al-Co-Cr-Ni-Ti Diffusion Couples, J. Phase Equilib. Diff, 2004, 25, p 237–251.

    Article  Google Scholar 

  8. Y. Minamino, Y. Koizumi, N. Tsuji, T. Yamada, and T. Takahashi, Interdiffusion in Co Solid Solutions of Co–Al–Cr–Ni System at 1423 K, Mater Trans, 2003, 44, p 63–71.

    Article  Google Scholar 

  9. J. Chen, J.K. Xiao, Z. Lu, C.Y. Wang, and L.J. Zhang, Atomic Mobilities and Interdiffusivities in Ni-rich fcc Ni-Co-Cr and Ni-Al-Co-Cr Systems Evaluated Using Composition Profiles and HitDIC, J. Alloys. Compd., 2021, 865, p 158645.

    Article  Google Scholar 

  10. M. Abhishek, and S. Yongho, Investigation of Sluggish Diffusion in FCC Al0.25CoCrFeNi High-Entropy Alloy, Mater. Res. Lett, 2021, 9(5), p 239–246.

    Article  Google Scholar 

  11. D.B. Miracle, and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  ADS  Google Scholar 

  12. T.S. Cao, J.L. Shang, J. Zhao, C.Q. Cheng, R. Wang, and H. Wang, The Influence of Al Elements on the Structure and the Creep Behavior of AlxCoCrFeNi High Entropy Alloys, Mater. Lett., 2016, 164, p 344–347.

    Article  Google Scholar 

  13. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and JTh.M. De Hosson, Secondary Phases in AlxCoCrFeNi High-Entropy Alloys: An In-Situ TEM Heating Study and Thermodynamic Appraisal, Acta Mater., 2017, 131, p 206–220.

    Article  ADS  Google Scholar 

  14. K. Ishikawa, M. Ise, I. Ohnuma, R. Kainuma, and K. Ishida, Phase Equilibria and Stability of the bcc Aluminide in the Co-Cr-Al System, Phys. Chem., 1998, 102(9), p 1206–1210.

    Google Scholar 

  15. N. Dupin, and I. Ansara, Thermodynamic Assessment of the System Al–Co, Rev. Métall, 1998, 95, p 1121–1129.

    Article  Google Scholar 

  16. N Saunders. 1991 Unpublished Revision Based on N Saunders, V.G. Rivlin. Z Metallkde 1987, 78, p. 795–801.

  17. A. Kusoffsky, and B. Jansson, A Thermodynamic Evaluation of the Co-Cr and the C-Co-Cr Systems, Calphad, 1997, 21(3), p 321–333.

    Article  Google Scholar 

  18. X.L. Liu, T. Gheno, B.B. Lindahl, G. Lindwall, B. Gleeson, and Z.-K. Liu, First-Principles Calculations, Experimental Study, and Thermodynamic Modeling of the Al-Co-Cr System, PLoS One, 2015, 10(4), p e0121386.

    Article  Google Scholar 

  19. X.L. Liu, G. Lindwall, T. Gheno, and Z.K. Liu, Thermodynamic Modeling of Al–Co–Cr, Al–Co Ni, Co–Cr–Ni Ternary Systems Towards a Description for Al–Co–Cr–Ni, Calphad, 2016, 52, p 125–142.

    Article  Google Scholar 

  20. I. Ansara, A.T. Dinsdale, and M.H. Rand, COST 507: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys-Thermochemical Database for Light Metal Alloys. Office for Official Publications of the European Communities, Luxembourg, 1998.

    Google Scholar 

  21. G.W. Roper, and D.P. Whittle, Interdiffusion in Ternary Co-Cr-Al Alloys, Metal Sci., 1980, 14(1), p 21–28.

    Article  Google Scholar 

  22. D.P. Whittle, and A. Green, The Measurement of Diffusion Coefficients in Ternary Systems, Scr. Metal., 1974, 8(7), p 883–884.

    Article  Google Scholar 

  23. J.O. Andersson, and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72(4), p 1350–1355.

    Article  ADS  Google Scholar 

  24. Y.W. Cui, K. Oikawa, R. Kainuma, and K. Ishida, Study of Diffusion Mobility of Al−Zn Solid Solution, J. Phase Equilib. Diff, 2006, 27, p 333–342.

    Google Scholar 

  25. L.J. Zhang, Y. Du, Y.F. Ouyang, H.H. Xu, X.G. Lu, Y. Liu, K. Yi, and J. Wang, Atomic Mobilities, Diffusivities and Simulation of Diffusion Growth in the Co–Si System, Acta Mater., 2008, 56, p 3940–3950.

    Article  ADS  Google Scholar 

  26. A. Engström, and J. Ågren, Assessment of Diffusional Mobilities in Face-centered Cubic Ni-Cr-Al Alloys, Z. Metallkd, 1996, 87, p 92–97.

    Google Scholar 

  27. Y.W. Cui, B. Tang, R. Kato, R. Kainuma, and K. Ishida, Interdiffusion and Atomic Mobility for Face-Centered-Cubic Co-Al Alloys, Metall. Mater. Trans. A, 2011, 42, p 2542–2546.

    Article  Google Scholar 

  28. R, Ohnuma, R. Kainuma, K. Ishida: Tohoku University, Sendai, Japan, unpublished research (2008)

  29. N.L. Peterson, and S.J. Rothman, Impurity Diffusion in Aluminum, Phys. Rev. B, 1970, 1, p 3264–3273.

    Article  ADS  Google Scholar 

  30. M.S. Anand, and R.P. Agarwala, Diffusion of Cobalt in Aluminium, Philos. Mag., 1972, 26, p 297–309.

    Article  ADS  Google Scholar 

  31. G. Erdelyi, D.L. Beke, F.J. Kedves, and I. Godeny, Determination of Diffusion Coefficients of Zn, Co and Ni in Aluminium by a Resistometric Method, Philos. Mag. B, 1978, 38, p 445–462.

    Article  ADS  Google Scholar 

  32. G.M. Hood, R.J. Schultz, and J. Armstrong, Co Tracer Diffusion in Al, Philos. Mag. A, 1983, 47, p 775–779.

    Article  ADS  Google Scholar 

  33. G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag, and H. Mehrer, Diffusion of Implanted 3d-Transition Elements in Aluminium Part I: Temperature Dependence, Z. Metallkd, 1995, 85, p 122–130.

    Google Scholar 

  34. W.B. Zhang, D.D. Liu, L.J. Zhang, Y. Du, and B.Y. Huang, Experiment Investigation and Computational Study of Atomic Mobility in fcc Ternatry Co-Cr-W, Calphad, 2014, 45, p 118–126.

    Article  Google Scholar 

  35. J.W. Weeton, Chromium Diffusivity in Alpha-Cobalt-Chromium Solid Solutions, Trans. A.S.M, 1952, 44, p 436–451.

    Google Scholar 

  36. A. Davin, V. Leroy, D. Coutsouradis, and L. Habraken, Comparison of the Diffusion of Some Substitution Elements in Nickel and Cobalt, Cobalt, 1963, 19, p 51–56.

    Google Scholar 

  37. A. Green, D.P. Whittle, J. Stringer, and N. Swindells, Interdiffusion in the Cobalt-Chromium System, Scr. Metall., 1963, 7, p 1079–1082.

    Article  Google Scholar 

  38. N. Zhao, W. Liu, J.J. Wang, X.G. Lu, and L.J. Zhang, Thermodynamic Assessment of the Ni–Co–Cr System and Diffusion Study of its fcc Phase, Calphad, 2020, 71, p 101996.

    Article  Google Scholar 

  39. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Goken, Diffusion of Solutes in fcc Cobalt Investigated by Diffusion Couples and First Principles Kinetic Monte Carlo, Acta Mater., 2016, 106, p 304–312.

    Article  ADS  Google Scholar 

  40. A. Engström, and J. Ågren, Assessment of Diffusional Mobilities in Face-Centered-Cubic Ni-Cr-Al Alloys, Z. Metallkd, 1996, 87, p 92–97.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Key R&D Program of China (Grant Number: 2017YFB0701904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, G., Lu, Y., Wang, J. et al. Experimental and Computational Studies of Atomic Mobilities for fcc Al-Co-Cr Alloys. J. Phase Equilib. Diffus. 43, 471–482 (2022). https://doi.org/10.1007/s11669-022-00986-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00986-1

Keywords

Navigation