Skip to main content
Log in

Thermodynamic and Microstructural Modeling of Nb-Si Based Alloys

  • Basic and Applied Research
  • Hume-Rothery Symposium
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Nb-Si alloys have gained much attention over the last decade as the next generation alloys for high-temperature aero-engine applications due to their low density and improved mechanical properties. However, the microstructures of these alloys are quite complex and vary significantly with the addition of elements such as Ti and Hf. Hence, an improved understanding of the phase stability and the microstructural evolution of these alloys is essential for alloy design for advanced high-temperature applications. In the present paper, we describe the microstructural evolution modeling results of the dendritic and eutectic solidification of the binary Nb-16 at.% Si alloy, obtained using a Phase-Field simulations performed with MICRESS. The effect of parameters; such as heat extraction rate, the ratio of the diffusivity of the solute in liquid to solid, and the interfacial energy of liquid and solid interface, on the microstructural evolution during dendritic solidification is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.P. Bewlay, M.R. Jackson, and M.F.X. Gigliotti, Niobium Silicide High Temperature, Situ Composites, Intermetallic Compounds—Principles and Practice, Vol. 3, R.L. Fleischer and J.H. Westbrook, Eds., John Wiley & Sons, 2001, p 541

  2. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, M.A. Stucke, Advanced Intermetallic Alloys—Beyond Gamma Titanium Aluminides, Mater. Sci. Eng. A, Vol 239–240, 1997, p 1-13

    Google Scholar 

  3. B.P. Bewlay, M.R. Jackson, P.R. Subramanian, Processing High-Temperature Refractory-Metal Silicide In-Situ Composites, J. Miner. Met. Mater. Soc., Vol 51, 1999, p 32-36

    Google Scholar 

  4. B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson, Refractory Metal-Intermetallic In-Situ Composites for Aircraft Engines, J. Miner. Met. Mater. Soc., 1997, 49(8), p 44-45, 67

  5. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, and P.R. Subramanian, A Review of Very-High-Temperature Nb-Silicide-Based Composites, Metall. Mater. Trans. A, Vol 34, 2003, p 2043-2052

    Article  Google Scholar 

  6. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramanian, M.G. Mendiratta and J.J. Lewandowski, MRS Bull, 2003, p 646

  7. B.P. Bewlay, M.R. Jackson, R.R. Bishop, The Nb-Ti-Si Ternary Phase Diagram: Determination of Solid-State Phase Equilibria in Nb- and Ti-Rich Alloys, J. Phase Equilibria, Vol 19 (No. 6), 1998, p 577-586

    Article  Google Scholar 

  8. B.P. Bewlay, J.A. Sutliff, R.R. Bishop, Evidence for the Existence of Hf5Si3, J. Phase Equilibria, Vol 20 (2), 1999, p 109-112

    Article  Google Scholar 

  9. J.-C. Zhao, B.P. Bewlay, M.R. Jackson, and L.A. Peluso, Alloying and Phase Stability in Niobium Silicide In-Situ Composites, Structural Intermetallics 3rd International Symposium, K.J. Hemker and D.M. Dimiduk, Eds., 2001, TMS, p 483-491

  10. H. Liang, Y.A. Chang, Thermodynamic modeling of the Nb-Si-Ti ternary system, Intermetallics, Vol. 7 (No. 5), 1999, p. 561-570

    Article  Google Scholar 

  11. LQ Chen, Phase-Field models for microstructure evolution, Annu. Rev. Mater. Res., 2000, 32, p 113–140

    Article  Google Scholar 

  12. Available at http://www.micress.de

  13. H.S. Udaykumar and W. Shyy, Development of a Grid-supported Marked Particle Scheme for Interface Tracking, 11th AIAA Comp. Fluid. Dyn. Conf. (Orlando, FL, 1993), AIAA-93-3384

  14. D. Juric, G. Tryggvason, A Front-Tracking Method for Dendritic Solidification, J. Comput. Phys., 1996, 123 (1), p 127-148

    Article  MATH  MathSciNet  Google Scholar 

  15. Karma A., Rappel W.-J., A Phase-Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics, Phys. Rev. E, 1996, 53(4), p 3017-3020

    Article  ADS  Google Scholar 

  16. G. Caginalp, Surface Tension and Supercooling in Solidification Theory, Applications of Field Theory to Statistical Mechanics, L. Garrido, Ed. Springer-Verlag, Berlin, 1985, p 216

    Google Scholar 

  17. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phase-Field Model for Isothermal Phase Transitions in Binary Alloys, Phys. Rev. A, 1992, 45, p 7424-7439

    Article  ADS  Google Scholar 

  18. R. Kobayashi, Modeling and Numerical Simulations of Dendritic Crystal Growth, Physica D, 1993, 63, p 410-423

    Article  MATH  ADS  Google Scholar 

  19. J.A. Sethian, J. Strain, Crystal Growth, Dendritic Solidification, J. Comput. Phys., 1992, 98(2), p 231-253

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. W.W. Mullins, R.F. Sekerka, Stability of a Planar Interface During Solidification of a Dilute Binary Alloy, J. Appl. Phys., 1964, 35(2), p 444-451

    Article  ADS  Google Scholar 

  21. S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, G.B. McFadden, Thermodynamically-Consistent Phase-Field Models for Solidification, Physica D, 1993, 69(1–2), p 189-200

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Karma A., Rappel W.-J. Quantitative Phase-Field Modeling of Dendritic Growth in Two and Three Dimensions, Phys. Rev. E., 1998, 57(4), p 4323-4349

    Article  MATH  ADS  Google Scholar 

  23. Steinbach I., F. Pessolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A Phase Field Concept for Multiphase Systems, Physica D, 1996, 94 (3), p 135-147

    Article  MATH  Google Scholar 

  24. U. Grafe, B. Böttger, J. Tiaden, S.G. Fries, Simulations of the Initial Transient During Directional Solidification of Multicomponent Alloys Using the Phase Field Method, Model. Simul. Mater. Sci. Eng., 2000, 8(6), p 871-880

    Article  ADS  Google Scholar 

  25. Karma A., Rappel W.J., Phase-Field Model of Dendritic Side Branching With Thermal Noise, Phys. Rev. E., 1999, 60(4), p 3614-3625

    Article  ADS  Google Scholar 

  26. J.H. Jeong, N. Goldenfield, J.A. Dantzig, Phase Field Model for Three-dimensional Dendritic Growth With Fluid Flow, Phys. Rev. E, 2001, 64(4), p 041602-041615

    Article  ADS  Google Scholar 

  27. D. Lewis, T. Pusztai, L. Granasy, J. Warren, and W. Boettinger, Phase-Field Models for Eutectic Solidification, J. Miner. Met. Mater. Soc., April 2004, p 35-39

  28. B. Böttger, J. Eiken, I. Steinbach, Phase Field Simulation of Equiaxed Solidification in Technical Alloys, Acta Mater, 2006, 54(10), p 2697-2704

    Article  Google Scholar 

  29. K.-M. Chang, B.P. Bewlay, J.A. Sutliff and M.R. Jackson, Cold-Crucible Directional Solidification of Refractory Metal-Silicide Eutectics, J. Miner. Met. Mater. Soc., June 1992, p 59

Download references

Acknowledgments

The authors acknowledge Christine Furstoss and Craig Young for providing their valuable suggestions on the project, Dr. Bernd Böttger and Philippe Schaffnit for their advise on the technical details associated with implementation of MICRESS software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundar Amancherla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amancherla, S., Kar, S., Bewlay, B. et al. Thermodynamic and Microstructural Modeling of Nb-Si Based Alloys. J Phs Eqil and Diff 28, 2–8 (2007). https://doi.org/10.1007/s11669-006-9015-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-006-9015-4

Keywords

Navigation