Skip to main content
Log in

Fatigue Failure Initiation Modeling in AA7075-T651 Using Microstructure-Sensitive Continuum Damage Mechanics

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

A continuum damage mechanics (CDM) model for high-cycle fatigue (HCF) is presented to study crack initiation in AA7075-T651. This study is based on the experimental observation of dependence of crack initiation life on microstructure of alloys. We investigate the effect of microstructural features such as grain size and grain orientation on crack initiation life. A crystal plasticity finite element model (CPFEM) is implemented in conjunction with CDM model to simulate damage evolution at grain scale. Finite element program ABAQUS has been used and the CPFEM–CDM model is written using a user material subroutine. Simulations are performed for constant amplitude, completely reversed loading. In order to provide a prediction for fatigue scatter, we consider different realizations of the microstructure as well as uncertainty in fatigue parameters. Given probability density function of damage parameters, we can transport it into a lifetime probability density function using simulations results. Good agreement is observed between simulations results and available experimental data. Further investigation is needed to develop the CPFEM–CDM model for HCF under variable loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.M. Kachanov, Rupture time under creep conditions. Izv. Akad. Nauk. SSSR 8, 26–31. Reprinted from: Int. J. Fract., 97, 11–18 (1958)

  2. J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  3. J.L. Chaboche, Continuous damage mechanics: a tool to describe phenomena before crack initiation. Nucl. Eng. Des. 64, 233–247 (1981)

    Article  Google Scholar 

  4. J.L. Chaboche, Continuum damage mechanics. I-General concepts. II-Damage growth, crack initiation, and crack growth. ASME, Transactions. J. Appl. Mech. 55, 59–72 (1988)

    Article  Google Scholar 

  5. J. Lemaıtre, A continuum damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  6. D. Krajcinovic, Damage Mechanics (North-Holland, Amsterdam, 1996)

    Google Scholar 

  7. M. Boudifa, K. Saanouni, J.L. Chaboche, A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming. Int. J. Mech. Sci. 51, 453–464 (2009)

    Article  Google Scholar 

  8. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Sci. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  9. T.H. Lin, Analysis of elastic and plastic strains of face centered cubic crystal. J. Mech. Phys. Solids 5, 143–149 (1957)

    Article  Google Scholar 

  10. M. Gologanu, J.B. Leblond, G. Perrin, J. Devaux, Recent extensions of Gurson’s model for porous ductile metals, in Continuum Micro-mechanics, CISM Courses and Lectures 377, ed. by P. Suquet (Springer, Berlin, 1997), pp. 61–130

    Google Scholar 

  11. M. Amiri, S. Modarres, Short fatigue crack initiation and growth modeling in aluminum 7075-T6. J. Mech. Eng. Sci. (2014). doi:10.1177/0954406214546880

    Google Scholar 

  12. M. Naderi, S.H. Hosseini, M. Khonsari, Probabilistic simulation of fatigue damage and life scatter of metallic components. Int. J. Plast. 43, 101–115 (2013)

    Article  Google Scholar 

  13. Y. Jiang, W. Ott, C. Baum, M. Vormwald, H. Nowack, Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory. Int. J. Plast 25, 780–801 (2009)

    Article  Google Scholar 

  14. G. Kang, Y. Liu, J. Ding, Q. Gao, Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: damage evolution and damage-coupled visco-plastic constitutive model. Int. J. Plast 25, 838–860 (2009)

    Article  Google Scholar 

  15. C.L. Chow, F. Yang, H.E. Fang, Damage mechanics characterization on the fatigue behavior of a solder joint material. J. Mech. Eng. Sci. 215, 883–892 (2001)

    Article  Google Scholar 

  16. C.L. Chow, And Wang J. crack propagation in mixed-mode ductile fracture with continuum damage mechanics. J. Mech. Eng. Sci. 203, 189–199 (1989)

    Article  Google Scholar 

  17. D.V. Rambabu, V.R. Ranganath, U. Ramamurty, A. Chatterjee, Variable stress ratio in cumulative fatigue damage: experiments and comparison of three models. J. Mech. Eng. Sci. 224, 271–282 (2010)

    Article  Google Scholar 

  18. K. Kyungmok, High-cycle fatigue simulation for aluminum alloy using cohesive zone law. J. Mech. Eng. Sci. 227, 683–692 (2013)

    Article  Google Scholar 

  19. F. Shen, W. Hu, Q. Meng, A damage mechanics approach to fretting fatigue life prediction with consideration of elastic–plastic damage model and wear. Trib. Int. 82, 176–190 (2015)

    Article  Google Scholar 

  20. K.S. Zhang, J.W. Ju, Z. Li, Y.L. Bai, W. Brocks, Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 85, 16–37 (2015)

    Article  Google Scholar 

  21. S. Masih, Mashayekhi1 M., and Torabian N. Identification and validation of a low cycle fatigue damage model for Al 7075-T6 alloy. J. Eng. Mater. Technol. 137, 011004 (2015)

    Article  Google Scholar 

  22. V. Dattoma, S. Giancane, R. Nobile, F.W. Panella, Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model. Int. J. Fatigue 28, 89–95 (2006)

    Article  Google Scholar 

  23. Y.S. Upadhyaya, B.K. Sridhara, Fatigue life prediction: a continuum damage mechanics and fracture mechanics approach. Mater. Des. 35, 220–224 (2012)

    Article  Google Scholar 

  24. B. Bhattacharya, B. Ellingwood, Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20, 631–639 (1998)

    Article  Google Scholar 

  25. B. Bhattacharya, B. Ellingwood, A new CDM-based approach to structural deterioration. Int. J. Solids Struct. 36, 1757–1779 (1999)

    Article  Google Scholar 

  26. A. Rinaldi, P. Peralta, D. Krajcinovic, Y.C. Lai, Prediction of scatter in fatigue properties using discrete damage mechanics. Int. J. Fatigue 28, 1069–1080 (2006)

    Article  Google Scholar 

  27. Y.C. Xiao, S. Li, Z. Gao, A continuum damage mechanic model for high cycle fatigue. Int. J. Fatigue 20, 503–508 (1998)

    Article  Google Scholar 

  28. R. Desmorat, A. Kane, M. Seyedi, J.P. Sermage, Two scale damage model and numerical issues for thermomechanical high cycle fatigue. Eur J Mech 26, 909–935 (2007)

    Article  Google Scholar 

  29. F. Bogard, P. Lestriez, Y.Q. Guo, Damage and rupture simulation of mechanical parts under cyclic loadings. Eng Mater Technol 132, 021003-1–021003-8 (2010)

    Article  Google Scholar 

  30. F. Bogard, P. Lestriez, Y.Q. Guo, Numerical modeling of fatigue damage and fissure propagation under cyclic loading. Int. J. Damage Mech 17, 173–187 (2008)

    Article  Google Scholar 

  31. M.D. Sangid, H.J. Maier, H. Sehitoglu, A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals. Acta Mater. 59, 328–341 (2011)

    Article  Google Scholar 

  32. M.D. Sangid, H.J. Maier, H. Sehitoglu, The role of grain boundaries on fatigue crack initiation—an energy approach. Int. J. Plast 27, 801–821 (2011)

    Article  Google Scholar 

  33. M.D. Sangid, H.J. Maier, H. Sehitoglu, An energy-based microstructure model to account for fatigue scatter in polycrystals. J. Mech. Phys. Solids 59, 595–609 (2011)

    Article  Google Scholar 

  34. D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32, 1521–1542 (2010)

    Article  Google Scholar 

  35. D.L. McDowell, Simulation-based strategies for microstructure-sensitive fatigue modeling. Mater Sci Eng. 468–470, 4–14 (2007)

    Article  Google Scholar 

  36. A. Manonukul, F.P.E. Dunne, High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. Lond. Ser. A 460, 1881–1903 (2004)

    Article  Google Scholar 

  37. C.P. Przybyla, D.L. McDowell, Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti–6Al–4V. Int. J. Plast 27, 1871–1895 (2011)

    Article  Google Scholar 

  38. V.V.C. Wan, D.W. MacLachlan, F.P.E. Dunne, A stored energy criterion for fatigue crack nucleation in polycrystals. Int. J. Fatigue 68, 90–102 (2014)

    Article  Google Scholar 

  39. R. Dingreville, C.C. Battaile, L.N. Brewew, E.A. Holm, B.L. Boyce, The effect of microstructural representation on simulations of microplastic ratcheting. Int. J. Plast 26, 617–633 (2010)

    Article  Google Scholar 

  40. F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading. Int. J. Plast. 25, 1066–1082 (2009)

    Article  Google Scholar 

  41. E. Kroner, Allgemeine Kontinuumstheoreie der Versetzungen und Eigenspannnungen. Arch. Ration. Mech. Anal. 4, 273 (1959)

    Article  Google Scholar 

  42. E.H. Lee, Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1 (1969)

    Article  Google Scholar 

  43. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  44. B. Eidel, Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (0 0 1) fcc single crystal. Acta Mater. 59, 1761–1771 (2011)

    Article  Google Scholar 

  45. J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  Google Scholar 

  46. D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)

    Article  Google Scholar 

  47. D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31, 1951–1976 (1983)

    Article  Google Scholar 

  48. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 348, 1001–1127 (1976)

    Article  Google Scholar 

  49. R.J. Asaro, Crystal plasticity. J. Appl. Mech. 50, 921–943 (1983)

    Article  Google Scholar 

  50. J. Lemaitre, A course on damage mechanics (Springer, Berlin, 1992)

    Book  Google Scholar 

  51. G. Sines, Behavior of metals under complex static and alternating stresses, in Metal Fatigue, ed. by G. Sines, J.L. Waisman (McGraw-Hill Book Co., New York, 1959), p. 145

    Google Scholar 

  52. R. Stephens, A. Fatemi, R.R. Stephens, H. Fuchs, Metal Fatigue in Engineering, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  53. Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, in Proceeding of the International Conference on fatigue of metals. Institution of Mechanical Engineers, London, 1956, pp. 138–14

  54. K. Van Dang, Sur la résistance à la fatigue des métaux. Sci. Technol. Armement 47, 647 (1973)

    Google Scholar 

  55. T.H. Lin, Analysis of elastic and plastic strain of a fcc crystal. J. Mech. Phys. Solids 5, 143 (1957)

    Article  Google Scholar 

  56. G. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307 (1938)

    Google Scholar 

  57. Y. Xue, H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy. Acta Mater. 55, 1975–1984 (2007)

    Article  Google Scholar 

  58. DREAM3D (2014) Digital Representation Environment for Analyzing Microstructure in 3D. http://www.dream3d

  59. ABAQUS/Standard Version 6.10. User Manual (Hibbit, Karlsson and Sorensen Inc., Rhode Island, 2013)

  60. Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, J.B. Jordon, Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Eng. Fract. Mech. 74, 2810–2823 (2007)

    Article  Google Scholar 

  61. D. Pyle, J. Lu, D. Littlewood, A. Maniatty, Effect of 3D grain structure representation in polycrystal simulations. Comput. Mech. 52, 135–150 (2013)

    Article  Google Scholar 

  62. J.B. Jordon, M.F. Horstemeyer, K. Solanki, Y. Xue, Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mech. Mater. 39, 920–931 (2007)

    Article  Google Scholar 

  63. T. Zhao, Y. Jiang, Fatigue of 775-T651 aluminum alloy. Int. J. Fatigue 30, 834–849 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, M., Amiri, M., Iyyer, N. et al. Fatigue Failure Initiation Modeling in AA7075-T651 Using Microstructure-Sensitive Continuum Damage Mechanics. J Fail. Anal. and Preven. 15, 701–710 (2015). https://doi.org/10.1007/s11668-015-0005-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-015-0005-x

Keywords

Navigation