Skip to main content
Log in

Impact of Density on the Behavior of Suspension Plasma-Sprayed TiB2 Coatings in the Presence of Molten Aluminum

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

TiB2-coated graphite substrates are potential wettable cathodes for aluminum electrolysis. However, their properties must be improved to prevent the infiltration of molten aluminum into the coating, which can result in delamination of the coating. Here, a suspension plasma spray process was used to deposit TiB2 coatings (60-110 µm thick) on graphite substrate. The coating’s porosity can be controlled through the SPS deposition parameters, resulting in a porosity range between 4 and 25%. A double-layered TiB2 coating was also prepared, consisting of a denser top layer (4% porous, 40 µm thick) and a porous bottom layer (19% porous, 65 µm thick). No cracks were observed in the as-sprayed porous and double-layered coatings, in contrast to the denser single-layer (5% porosity) coating. Sessile Al drop tests were performed on TiB2 coatings to investigate their behavior in contact with molten aluminum. It was shown that the coating porosity impacts the spreading kinetics of Al drop, and all TiB2 coatings have a much better molten aluminum wettability than the graphite substrate. Moreover, after 8 h of contact with molten Al, no Al infiltration nor coating delamination was observed in the double-layered TiB2 coating, in contrast to single-layer coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aluminium for Climate: Exploring Pathways to Decarbonize the Aluminium Industry, World Economic Forum, Community Report (2020)

  2. M. Gautam, B. Pandey, M. Agrawal, Chapter 8 - Carbon Footprint of Aluminum Production: Emissions and Mitigation, Environmental Carbon Footprints, p 197–228 (2018). https://doi.org/10.1016/B978-0-12-812849-7.00008-8

  3. H. Kvande and W. Haupin, Inert Anodes for Al Smelters: Energy Balances and Environmental Impact, JOM., 2001, 53, p 29-33. https://doi.org/10.1007/s11837-001-0205-6

    Article  CAS  Google Scholar 

  4. C.E. Ransley, Refractory Carbides and Borides for Aluminum Reduction Cells, JOM., 1962, 14, p 129-135. https://doi.org/10.1007/BF03378134

    Article  CAS  Google Scholar 

  5. C. Brown, Next Generation Vertical Electrode Cells, JOM., 2001, 53, p 39-42. https://doi.org/10.1007/s11837-001-0208-3

    Article  CAS  Google Scholar 

  6. R.R. Patharabe, Design and Modeling of an Aluminum Smelting Process to Analyze Aluminum Smelter and Identify the Alternative Uses of Nuclear Power Small Modular Reactor, Masters Thesis, 7860, Missouri University of Science and Technology, 2017. https://scholarsmine.mst.edu/masters_theses/7860

  7. T.T. Nguyen, V. De Nora, Aluminium Electrowinning Cell with Metal-Based Cathodes, Patent number CA2684041A1, 2008. https://patents.google.com/patent/CA2684041A1/en?oq=CA2684041A1

  8. Y.H. Koh, S.Y. Lee, and H.E. Kim, Oxidation Behavior of Titanium Boride at Elevated Temperatures, J. Am. Ceram. Soc., 2001, 84, p 239-241. https://doi.org/10.1111/j.1151-2916.2001.tb00641.x

    Article  CAS  Google Scholar 

  9. E. Kubiňáková, M. Benköová, P. Veteška, Ľ Bača, and J. Híveš, Surface Characterisation and Wettability of Titanium Diboride by Aluminium at Low Temperature, Adv. Appl. Ceram., 2020, 119, p 22-28. https://doi.org/10.1080/17436753.2019.1687207

    Article  CAS  Google Scholar 

  10. D.A. Weirauch, W.J. Krafick, G. Ackart, and P.D. Ownby, The wettability of Titanium Diboride by Molten Aluminum Drops, J. Mater. Sci., 2005, 40, p 2301-2306. https://doi.org/10.1007/s10853-005-1949-0

    Article  CAS  Google Scholar 

  11. M.S. Jensen, M. Pezzotta, Z.L. Zhang, M.-A. Einarsrud, and T. Grande, Degradation of TiB2 Ceramics in Liquid Aluminum, J. Eur. Ceram. Soc., 2008, 28, p 3155-3164. https://doi.org/10.1016/j.jeurceramsoc.2008.05.011

    Article  CAS  Google Scholar 

  12. H. Heidari, H. Alamdari, D. Dubé, and R. Schulz, Interaction of Molten Aluminum with Porous TiB2-Based Ceramics Containing Ti–Fe Additives, J. Eur. Ceram. Soc., 2012, 32, p 937-945. https://doi.org/10.1016/j.jeurceramsoc.2011.10.053

    Article  CAS  Google Scholar 

  13. W.A. Zdaniewski, Effect of Segregated Cr on Degradation of (Ti, Cr)B2 Exposed to Liquid Aluminum, J. Electrochem. Soc., 1986, 133, p 1777-1781. https://doi.org/10.1149/1.2109017

    Article  CAS  Google Scholar 

  14. L. Xi, I. Kaban, R. Nowak, B. Korpała, G. Bruzda, N. Sobczak, N. Mattern, and J. Eckert, High-Temperature Wetting and Interfacial Interaction Between Liquid Al and TiB2 Ceramic, J. Mater. Sci., 2015, 50, p 2682-2690. https://doi.org/10.1007/s10853-015-8814-6

    Article  CAS  Google Scholar 

  15. E. Yvenou, B. Davis, D. Guay, and L. Roué, Electrodeposited TiB2 on Graphite as Wettable Cathode for Al Production, J. Am. Ceram. Soc., 2021, 104, p 1247-1254. https://doi.org/10.1111/jace.17547

    Article  CAS  Google Scholar 

  16. A.J. Caputo, W.J. Lackey, I.G. Wright, and P. Angelini, Chemical Vapor Deposition of Erosion-Resistant TiB2 Coatings, Chem. Informationsd., 1986, 17, p 2274-2280. https://doi.org/10.1002/chin.198601326

    Article  Google Scholar 

  17. T. Takahashi and H. Kamiya, Chemical Vapor Deposition of Titanium Diboride, J. Cryst. Growth., 1974, 26, p 203-209. https://doi.org/10.1016/0022-0248(74)90247-4

    Article  CAS  Google Scholar 

  18. B. Bakhit, J. Palisaitis, J. Thörnberg, J. Rosen, P.O.Å. Persson, L. Hultman, I. Petrov, J.E. Greene, and G. Greczynski, Improving the High-Temperature Oxidation Resistance of TiB2 Thin Films by Alloying with Al, Acta Mater., 2020, 196, p 677-689. https://doi.org/10.1016/j.actamat.2020.07.025

    Article  CAS  Google Scholar 

  19. D. Tejero-Martin, M. Rezvani Rad, A. McDonald, and T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J. Therm. Spray Technol., 2019, 28, p 598-644. https://doi.org/10.1007/s11666-019-00857-1

    Article  CAS  Google Scholar 

  20. M. Aghasibeig, F. Tarasi, R.S. Lima, A. Dolatabadi, and C. Moreau, A Review on Suspension Thermal Spray Patented Technology Evolution, J. Therm. Spray Technol., 2019, 28, p 1579-1605. https://doi.org/10.1007/s11666-019-00904-x

    Article  Google Scholar 

  21. R.Z. Peng, G. Xie, Y.Q. Hou, L. Tian, and X.H. Yu, Microstructure and Property of Plasma Sprayed TiB2 Wettable Coatings on Carbon Cathodes, Adv. Mater. Res., 2014, 881-883, p 1580–1583. https://doi.org/10.4028/www.scientific.net/AMR.881-883.1580

    Article  CAS  Google Scholar 

  22. D. Hong, Y. Niu, H. Li, X. Zhong, W. Tu, X. Zheng, and J. Sun, Comparison of Microstructure and Tribological Properties of Plasma-Sprayed TiN, TiC and TiB2 Coatings, Surf. Coat. Technol., 2019, 374, p 181-188. https://doi.org/10.1016/j.surfcoat.2019.05.071

    Article  CAS  Google Scholar 

  23. É. Yvenou, A. Bily, F. Ben Ettouil, A. Dolatabadi, B. Davis, D. Guay, C. Moreau, and L. Roué, TiB2 Deposited on Graphite by Suspension Plasma Spray as Al Wettable Cathode, J. Therm. Spray Technol., 2021, 30, p 1535-1543. https://doi.org/10.1007/s11666-021-01222-x

    Article  CAS  Google Scholar 

  24. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Enhancement of Amorphous Phase Formation in Alumina–YSZ Coatings Deposited by Suspension Plasma Spray Process, Surf. Coat. Technol., 2013, 220, p 191-198. https://doi.org/10.1016/j.surfcoat.2012.10.054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Strategic Program (STPGP/494283-2016), Prima Québec (Grant R13-13-001), Metal7 and Kingston Process Metallurgy for supporting this work. Saeed Mohammadkhani acknowledges the support of the UNESCO Chair Materials for Energy Conversion, Saving and Storage (MATECSS) Excellence Scholarship. The authors also thank R. Schulz from Hydro-Québec's Research Institute (IREQ) for the free use of their experimental setup for sessile drop tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Moreau or D. Guay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadkhani, S., Bily, A., Davis, B. et al. Impact of Density on the Behavior of Suspension Plasma-Sprayed TiB2 Coatings in the Presence of Molten Aluminum. J Therm Spray Tech 31, 1499–1507 (2022). https://doi.org/10.1007/s11666-022-01370-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01370-8

Keywords

Navigation