Skip to main content
Log in

TiB2 Deposited on Graphite by Suspension Plasma Spray as Al Wettable Cathode

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In developing wettable TiB2-based cathodes for Al production, the main problem encountered for decades is the difficulty to sinter or melt this refractory material. Here, suspension plasma spray (SPS) is used as this process makes it possible to use micrometric TiB2 particles to favor a high heat transfer per particle. In addition, an argon gas shield is used to protect the inflight TiB2 particles from oxidation with air during spraying. Our results confirm the efficiency of the argon shroud to limit TiB2 oxidation when compared with a TiB2 coating obtained without shroud. The SPS TiB2 coatings show a good adhesion to the graphite substrate. However, their high porosity indicates an insufficient TiB2 melting during the spraying, suggesting that the transit time spent by the TiB2 particles in the plasma is too short. The SPS TiB2 coatings present a good wettability for molten Al. However, Al infiltration through the porous coating results in the direct contact of molten Al with the graphite substrate, which may be detrimental for its mechanical integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.G. Munro, Material Properties of Titanium Diboride, J. Res. Natl. Inst. Stand. Technol., 2000, 105(5), p 709–720.

    Article  CAS  Google Scholar 

  2. R. Telle, L.S. Sigl and K. Takagi, Boride-Based Hard Materials, ed. by R. Riedel. Handbook of Ceramic Hard Materials, vol 2 (Wiley, Weinheim, 2000)

    Google Scholar 

  3. R.P. Pawlek, Wettable Cathodes: An Update, ed. by A. Tomsett, J. Johnson. Essentials Readings in Light Metals. Electrode Technology for Aluminum Production, vol 4 (Wiley, 2016), pp. 1185–1190

    Chapter  Google Scholar 

  4. M. Sørlie and H.A. Øye, Inert and Wettable Cathodes. Cathodes in Aluminium Electrolysis (Aluminium-Verlag, Düsseldorf, FRG, 1994), pp. 66–70

  5. H. Kvande and W. Haupin, Inert Anodes for Al Smelters: Energy Balances and Environmental Impact, JOM, 2001, 53(5), p 29–33.

    Article  CAS  Google Scholar 

  6. C. Brown, Next Generation Vertical Electrode Cells, JOM, 2001, 53(5), p 39–42.

    Article  CAS  Google Scholar 

  7. H. Heidari, H. Alamdari, D. Dubé and R. Schulz, Pressureless Sintering of TiB2-Based Composites Using Ti and Fe Additives for Development of Wettable Cathodes. Light Metals (TMS, Warrendale, Pa, 2011), pp. 1111–1116.

  8. M.S. Jensen, M. Pezzotta, Z.L. Zhang, M.-A. Einarsrud and T. Grande, Degradation of TiB2 Ceramics in Liquid Aluminum, J. Eur. Ceram. Soc., 2008, 28(16), p 3155–3164.

    Article  CAS  Google Scholar 

  9. J. Li, X.-J. Lü, Y.-Q. Lai, Q.-Y. Li and Y.-X. Liu, Research Progress in TiB2 Wettable Cathode for Aluminum Reduction, JOM, 2008, 60(8), p 32–37.

    Article  CAS  Google Scholar 

  10. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.-C. Berndt, J.-O. Berghaus et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376–1440.

    Article  CAS  Google Scholar 

  11. P.V. Ananthapadmanabhan, K.P. Sreekumar, P.V. Ravindran and N. Venkatramani, Effect of Oxygen Pick-Up on the Properties of Plasma Sprayed Titanium Diboride Coatings, Thin Solid Films, 1993, 224(2), p 148–152.

    Article  Google Scholar 

  12. P. Ruzhen, X. Gang, H. Yanqing, T. Lin and Y. Xiaohua, Microstructure and Property of Plasma Sprayed TiB2 Wettable Coatings on Carbon Cathodes, Adv. Mater. Res., 2014, 881, p 1580–1583.

    Google Scholar 

  13. D. Hong, Y. Niu, H. Li, X. Zhong, W. Tu and X. Zheng, Comparison of Microstructure and Tribological Properties of Plasma-sprayed TiN, TiC and TiB2 Coatings, Surf. Coat. Technol., 2019, 374, p 181–188.

    Article  CAS  Google Scholar 

  14. H. Lu, W. Jia, R. Ma, W. Yan and Y. Wang, Titanium Diboride and Molybdenum Silicide Coating on Cathode Blocks in Aluninum Electrolysis Cells by Atmospheric Plasma Spraying. Light Metals (TMS, Warrendale, Pa, 2005), pp. 785–788.

  15. K. Seitz and F. Hitmann, Titanium Diboride Plasma Coating of Carbon Cathode Materials Part I: Coating Process and Microstructure. Light Metals (TMS, Warrendale, Pa, 1998), pp. 379–383.

  16. K. Seitz and F. Hitmann, Titanium Diboride Plasma Coating of Carbon Cathode Materials Part II: Characterization. Light Metals (TMS, Warrendale, Pa, 1998), pp. 385–390.

  17. P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D: Appl. Phys., 2013, 46(22), p 14.

    Google Scholar 

  18. R. Vaßen, H. Kaßner, G. Mauer and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19, p 219–225.

    Article  Google Scholar 

  19. P. Fauchais and A. Vardelle, Solution and Suspension Plasma Spraying of Nanostructure Coatings. Advanced Plasma Spray Applications (IntechOpen Ltd., 2012), pp. 149–188.

  20. M. Aghasibeig, F. Tarasi, R.S. Lima, A. Dolatabadi and C. Moreau, A Review on Suspension Thermal Spray Patented Technology Evolution, J. Therm. Spray Technol., 2019, 28, p 1579–1605.

    Article  Google Scholar 

  21. A. Akbarnozari, F. Ben-Ettouil, S. Amiri, O. Bamber, J.-D. Grenon, M. Choquet, L. Pouliot and C. Moreau, Online Diagnostic System to Monitor Temperature of In-Flight Particles in Suspension Plasma Spray, J. Therm. Spray Technol., 2020, 29, p 908–920.

    Article  Google Scholar 

  22. E. Yvenou, B. Davis, D. Guay and L. Roué, Electrodeposited TiB2 on Graphite as Wettable Cathode for Al Production, J. Am. Ceram. Soc., 2020, 104, p 1247–1254.

    Article  Google Scholar 

  23. M. Jadidi, M. Mousavi, S. Moghtadernejad and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24, p 11–23.

    CAS  Google Scholar 

  24. P. Fauchais, M. Vardelle, A. Vardelle and S. Goutier, What do we Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24, p 1120–1129.

    Article  Google Scholar 

  25. X.L. Sun, A.I.Y. Tok, C.L. Gan and M.K. Schreyer, Solvent and Plasma Gas Influence on the Synthesis of Y2O3 Nanoparticles by Suspension Plasma Spraying, J. Mater. Res., 2007, 22(5), p 1306–1313.

    Article  CAS  Google Scholar 

  26. D.A. Weirauch, W.J. Krafick, G. Ackart and P.D. Ownby, The Wettability of Titanium Diboride by Molten Aluminium Drops, J. Mater. Sci., 2005, 40, p 2301–2306.

    Article  CAS  Google Scholar 

  27. H. Heidari, H. Alamdari, D. Dubé and R. Schulz, Interaction of Molten Aluminum with Porous TiB2-based Ceramics Containing Ti–Fe Additives, J. Eur. Ceram. Soc., 2012, 32, p 937–945.

    Article  CAS  Google Scholar 

  28. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Löffler and P.J. Uggowitzer, Aluminium Carbide Formation in Interpenetrating Graphite/Aluminium Composites, Mater. Sci. Eng. A., 2007, 448(1–2), p 1–6.

    Article  Google Scholar 

  29. T. Wang, Z. Jin and J.C. Zhao, Thermodynamic Assessment of the Al-Zr Binary System, J. Phase Equilibria, 2001, 22, p 544–551.

    Article  CAS  Google Scholar 

  30. C. Yan, R. Liu, C. Zhang, Y. Cao and X. Long, Synthesis and Formation Mechanism of ZrB2–Al2O3 Composite Powder Starting from ZrO2, Al, and BN, Adv. Powder Technol., 2016, 27, p 711–716.

    Article  CAS  Google Scholar 

  31. N. Sobczak, Interaction Between Molten Aluminum and Oxides, ed by N. Gupta, W.H. Hunt. Solidification Processing of Metal Matrix Composites—Rohatgi Honorary Symposium (TMS, The Minerals, Metals & Materials Society, 2006), pp. 133–146.

    Google Scholar 

Download references

Acknowledgment

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada through the Strategic program (STPGP/494283-2016), Prima Québec (grant R13-13-001), Metal7 and Kingston Process Metallurgy for supporting this work. The authors also thank R. Schulz from Hydro-Québec's research institute (IREQ) for the free use of their experimental set-up for the Al wetting measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Moreau or Lionel Roué.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvenou, É., Bily, A., Ben Ettouil, F. et al. TiB2 Deposited on Graphite by Suspension Plasma Spray as Al Wettable Cathode. J Therm Spray Tech 30, 1535–1543 (2021). https://doi.org/10.1007/s11666-021-01222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01222-x

Keywords

Navigation