Skip to main content

Advertisement

Log in

Microstructure and Properties of Laser-cladded Fe50Mn30Co10Cr10 High Entropy Alloy Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Fe50Mn30Co10Cr10 high-entropy alloys were prepared by laser cladding technology. The microstructure and phase structure of the cladding layer were analyzed. The effects of laser cladding parameters on mechanical property of the cladding layer were studied. The results show that, the Fe50Mn30Co10Cr10 high entropy alloy cladding layer is composed of FCC structure and HCP structure, BCC structure was also observed in the layer. There are fine equiaxed grains at the top of the cladding layer while columnar grains near the fusion zone. The maximum hardness of cladding layer is 292.9 HV under the laser cladding parameter of 200 W and 5 mm/s. The maximum tensile strength of the substrate with cladding layer is 692.4 MPa, and the maximum elongation is 21.3%. The fracture mode of cladding layer is ductile fracture. Adhesive wear and abrasive wear are both observed at surface of the cladding layer after wear testing. The best wear resistance is obtained at cladding parameter of 200 W, 7 mm/s with the weight loss of 0.0215g and friction coefficient of 0.6294. The results provide a certain support for the preparation process and microstructure, properties analysis of Fe50Mn30Co10Cr10 high entropy alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122(1), p 448.

    Article  CAS  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93.

    Article  Google Scholar 

  3. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao and T.J. Li, Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater., 2017, 124, p 143–150.

    Article  CAS  Google Scholar 

  4. M. L. Wang, H. Z. Cui, Y. Q. Zhao, C. M. Wang, N. Wei, Y. Zhao, X. Zhang, Q. Song, A Simple Strategy for Fabrication of an FCC-Based Complex Concentrated Alloy Coating with Hierarchical Nanoprecipitates and Enhanced Mechanical Properties, Mater. Des.,2019, 180.

  5. M. L. Wang, Y. P. Lu, G. J. Zhang, H. Z. Cui, D. F. Xu, N. Wei, T. J. Li, A Novel High-Entropy Alloy Composite Coating with Core-Shell Structures Prepared by Plasma Cladding, Vacuum., 2021, 184.

  6. M.L. Wang, Y.P. Lu, G.J. Zhang, H.Z. Cui, D.F. Xu, N. Wei and T.J. Li, Effect of Plasma Remelting on Microstructure and Properties of a CoCrCuNiAl0.5 High-Entropy Alloy Prepared by Spark Plasma Sintering, J. Mater. Sci., 2021, 56, p 5878–5898.

    Article  CAS  Google Scholar 

  7. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin and J.W. Yeh, Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta Mater., 2011, 59(16), p 6308–6317.

    Article  CAS  Google Scholar 

  8. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan and A. Hohenwarter, Mechanical Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy After Severe Plastic Deformation, Acta Mater., 2015, 96, p 258–268.

    Article  CAS  Google Scholar 

  9. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen and C.T. Liu, Ductile CoCrFeNiMox High Entropy Alloys Strengthened by Hard Intermetallic Phases, Acta Mater., 2016, 116, p 332–342.

    Article  CAS  Google Scholar 

  10. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh and H.C. Shih, Effect of the Aluminium Content of AlxCrFe1.5MnNi0.5 High-Entropy Alloys on the Corrosion Behaviour in Aqueous Environments, Corros. Sci., 2008, 50(7), p 2053–2060.

    Article  CAS  Google Scholar 

  11. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T. Shun, C.H. Tsau and S.Y. Chang, Nanostuctures High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv Eng Mater, 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  12. M.R. He, S. Wang, K. Jin, H.B. Bei, K. Yasuda, S. Matsumura, K. Higashida and I.M. Robertson, Enhanced Damage Resistance and Novel Defect Structure of CrFeCoNi Under In Situ Electron Irradiation, Scr. Mater., 2016, 125, p 5–9.

    Article  CAS  Google Scholar 

  13. J.T. Fan, L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, P. Cui, M.Z. Ma, Q. Jing, G. Li and R.P. Liu, Improved the Microstructure and Mechanical Properties of AlFeCoNi High-Entropy Alloy by Carbon Addition, Mater. Sci. Eng. A, 2018, 728, p 30–39.

    Article  CAS  Google Scholar 

  14. T.D. Huang, C.L. Zhang, H. Jiang, Y.P. Lu and T.J. Li, Effect of Carbon Addition on the Microstructure and Mechanical Properties of CoCrFeNi High Entropy Alloy, Sci. China Technol. Sci, 2018, 61(1), p 117–123.

    Article  CAS  Google Scholar 

  15. R.K. Nutor, M. Azeemullah, Q.P. Cao, X.D. Wang, D.X. Zhang and J.Z. Jiang, Microstructure and Properties of a Co-free Fe50Mn27Ni10Cr13 High Entropy Alloy, J. Alloys Compd., 2021, 851, p 156842.

    Article  CAS  Google Scholar 

  16. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230.

    Article  CAS  Google Scholar 

  17. J.L. Liu, H.J. Yu, C.Z. Chen, F. Weng and J.J. Dai, Research and Development Status of Laser Cladding on Magnesium Alloys: A Review, Opt. Lasers Eng., 2017, 93, p 195–210.

    Article  Google Scholar 

  18. L. Dubourg, D. Ursescu, F. Hlawka and A. Cornet, Laser Cladding of MMC Coatings Onaluminium Substrate: Influence of Composition and Microstructure on Mechanical Properties, Wear, 2005, 258(11–12), p 1745–1754.

    Article  CAS  Google Scholar 

  19. F. Weng, H.J. Yu, C.Z. Chen and J.J. Dai, Microstructures and Wear Properties of Laser Cladding Co–based Composite Coatings on Ti–6Al–4V, Mater. Des., 2015, 80, p 174–181.

    Article  CAS  Google Scholar 

  20. H.X. Liu, Q. Xu, C.Q. Wang and X.W. Zhang, Corrosion and Wear Behavior of Ni60CuMoW Coatings Fabricated by Combination of Laser Cladding and Mechanical Vibration Processing, J. Alloys Compd., 2015, 621, p 357–363.

    Article  CAS  Google Scholar 

  21. F.Y. Shu, L. Wu, H.Y. Zhao, S.H. Sui, L. Zhou, J. Zhang, W.X. He, P. He and B.S. Xu, Microstructure and High-Temperature Wear Mechanism of Laser Cladded CoCrBFeNiSi High-Entropy Alloy Amorphous Coating, ACS Mater. Lett., 2017, 211, p 235–238.

    Article  Google Scholar 

  22. J.D. Majumdar, R. Galun, B.L. Mordike and I. Manna, Effect of Laser Surface Meltingon Corrosion and Wear Resistance of a Commercial Magnesium Alloy, Mater. Sci. Eng. A, 2003, 361, p 119–129.

    Article  Google Scholar 

  23. X.L. Ji, H. Duan, H. Zhang and J.J. Ma, Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-Entropy Alloy Coatings, Tribol. Trans., 2015, 58(6), p 1119–1123.

    Article  CAS  Google Scholar 

  24. W. Wu, L. Jiang, H. Jiang, X.M. Pan, Z.Q. Cao, D.W. Deng, T.M. Wang and T.J. Li, Phase Evolution and Properties of Al2CrFeNiMox High-Entropy Alloys Coatings by Laser Cladding, J. Therm. Spray Technol., 2015, 24(7), p 1333–1340.

    Article  CAS  Google Scholar 

  25. C. Ni, Y. Shi, J. Liu and G.Z. Huang, Characterization of Al0.5FeCu0.7NiCoCr High-Entropy Alloy Coating on Aluminum Alloy by Laser Cladding, Opt. Laser Technol., 2018, 105, p 257–263.

    Article  CAS  Google Scholar 

  26. J. Y. Aguilar-Hurtado, A. Vargas-Uscategui, K. Paredes-Gil, R. Palma-Hillerns, M. J. Tobar, J. M. Amado, Boron Addition in a Non-equiatomic Fe50Mn30Co10Cr10 Alloy Manufactured by Laser Cladding: Microstructure and Wear Abrasive Resistance, Appl. Surf. Sci., 2020, 515.

  27. Z. Wu, H. Bei, F. Otto, G.M. Pharr and E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-Component Equia-tomic Solid Solution Alloys, Intermetallics, 2014, 46, p 131–140.

    Article  CAS  Google Scholar 

  28. G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, M. Dong and D. Zhang, High Temperature Wear Performance of Laser-Cladded FeNiCoAlCu High-Entropy Alloy Coating, Appl. Surf. Sci., 2018, 445, p 113–122.

    Article  CAS  Google Scholar 

  29. J. B. Chen, B. Sun, Y. Y. Ge, X. L. Hu, L. H. Zhang, X. B. Liang, X. C. Zhang, Nb Doping in Laser-Cladded Fe25Co25Ni25(B0.7Si0.3)25 High Entropy Alloy Coatings: Microstructure Evolution and Wear Behavior, Surf. Coat. Technol.2020, 402.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, X., Hua, P. et al. Microstructure and Properties of Laser-cladded Fe50Mn30Co10Cr10 High Entropy Alloy Coatings. J Therm Spray Tech 31, 991–999 (2022). https://doi.org/10.1007/s11666-021-01295-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01295-8

Keywords

Navigation