Skip to main content

Wettable Cathodes: An Update

  • Chapter
Essential Readings in Light Metals

Abstract

This overview covers the development of aluminium-wettable cathodes for the primary aluminium industry in the period 2000 to 2009. It continues a review of TiB2/C composites, including their physical and mechanical properties. This overview also includes the development of binders, the manufacture of the composites, their application on the cathode surface, and their resistance to sodium penetration into the cathode lining. Mathematical modelling has been introduced for the drained slope, the cathode current distribution, the flow of anode gas bubbles, and the heat balance. Practical tests involved not only laboratory and bench scales but also use in big electrolysis cells operated at more than 160 kA. Although they can prolong cell life, the main advantage of aluminium-wettable cathode coatings appears to be for future multi-cell designs and for new electrolysis pot designs rather than for revamping existing Hall-Héroult aluminium electrolysis cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Keniry, “Future directions for aluminium reduction cell technology”, 7th Australasian Aluminium Smelting Technology conference, Melbourne, Australia 11–16 November 2001, 14 pp.

    Google Scholar 

  2. J. Keniry, “Strategic issues for aluminium smelting defined needs and opportunities for technology developments”, Aluminium International Today 14 (2002) 6, pp. 20,24,26,28,30

    Google Scholar 

  3. W. Haupin and W. Frank, “Current and energy efficiency of Hall-Héroult cells — past, present and future”, Light Metal Age 60 (2002) 5–6, pp 6–8,10–13

    Google Scholar 

  4. W. Choate and J. Green, “Techno-economic assessment of the carbothermic reduction process for aluminium production”, Light Metals 2006, ed. T. J. Galloway (TMS, Warrendale, Pa), pp. 445–450

    Google Scholar 

  5. J. W. Evans, ‘The evolution of technology for light metals over the last 50 years: Al, Mg, and Li”, JOM 59 (2007) 2, pp. 30–38

    Article  Google Scholar 

  6. B. Welch, “Inert anodes — the status of the materials science, the opportunities they present and the challenges that need resolving before commercial implementation”, Light Metals 2009, ed. G. Bearne (TMS, Warrendale, Pa), pp. 971–978

    Google Scholar 

  7. R. P. Pawlek, “Aluminum wettable cathodes: an update”, Aluminum Transactions 3 (2000) 1, pp. 139–146

    Google Scholar 

  8. J. Li et al., “Research progress in TiB2 wettable cathode for aluminium reduction”, JOM 60 (2008) 8, pp. 32–37

    Article  Google Scholar 

  9. R. J. Batterham and M. J. Hollitt, “Production of primary metals — towards improved sustainability”. Erzmetall 56 (2003) 9, pp. 519–528

    Google Scholar 

  10. D. A. Simakov et al., “The pilot tests of wettable cathode coating”, XI Int. Conf. on Aluminium Siberia 2005, Krasnoyarsk 13 Sept. 2005

    Google Scholar 

  11. M. Scherkl and A. Bischoff, “Stabile Elektroden für die Aluminiumschmelzflusselektrolyse”, Metall 56 (2002) 4, pp. 208–213

    Google Scholar 

  12. T. Nguyen and C. McMinn, „The Moltech metallic anode and wettable cathode coating“, Aluminium World 2 (2002) 1, pp. 30–33

    Google Scholar 

  13. V. de Nora, “Veronica and Tinor 2000: new technologies for aluminium production”, Interface 11 (2002) 4, pp. 20–24

    Google Scholar 

  14. B. H. Boost, “Wettable cathodes and inert anodes”, IX Int. Conf., Sept. 9–11, 2003, Proc. Aluminium of Siberia 2003, Krasnoyarsk, pp. 153–159

    Google Scholar 

  15. V. de Nora, “Aluminium-wettable porous ceramic material”, WO patent 02/070783 (7 March 2001)

    Google Scholar 

  16. Anonymous, “Titanium diboride”, Am. Ceram. Soc. Bull. 80 (2001) 8, pp. 102–104

    Google Scholar 

  17. R. A. Rapp, “Cathode for aluminium production and electrolytic cell”, US patent application 2002/0125125 (6 March 2001)

    Google Scholar 

  18. X. Luo et al., “Influence of metallic additives on densification behaviour of hot-pressed TiB2”, Light Metals 2009, ed. G. Bearne (TMS, Warrendale, Pa), pp. 1151–1155

    Google Scholar 

  19. H. Lu et al.,“Titanium diboride and tungsten suicide composite used as aluminium electrolysis inert cathode material”, Light Metals 2006, ed. T. J. Galloway (TMS, Warrendale. Pa), pp. 687–690

    Google Scholar 

  20. Anonymous, “Advanced technical ceramics for metallurgy”, APT Aluminium News 5 (2009) 1, p. 3

    Google Scholar 

  21. D. Simakov et al., “Electrodeposition of TiB2 from cryolite alumina melts”, Light Metals 2008, ed. D. H. de Young (TMS, Warrendale, Pa), pp. 1019–1022

    Google Scholar 

  22. J.-L. Xu, “Preparation of TiB2 inert cathode by electrodeposition process for aluminium electrolysis”, J. Northeast Univ. Nat. Sci. 25 (2005) 9, pp. 873–875

    Google Scholar 

  23. J. Li, “Preparation of TiB2 coatings by electroplating in molten salt”, Rare Metals 24 (2005) 3, pp. 261–266

    Google Scholar 

  24. Y. Ban et al., “Preparation of TiB2 inert cathode on graphite by electrodeposition process for aluminium electrolysis”, Light Metals 2007, ed. M. Sorlie (TMS, Warrendale, Pa.), pp. 1055–1059

    Google Scholar 

  25. Y. G. Ban, “Preparation of TiB2 coating and its corrosion resistance to electrolyte”, J. Northeast. Univ. 28 (2007) 12, pp. 1729–1732

    Google Scholar 

  26. S. V. Devyatkin, “Electrosynthesis of zirconium boride from cryolite-alumina melts containing zirconium and boron oxides”, Russian Journal of Electrochemistry 37 (2001) 12, pp. 1308–1311

    Article  Google Scholar 

  27. H. Lu et al., “Titanium diboride and molybdenum suicide composite coating on cathode carbon blocks in aluminium electrolysis cells by atmospheric plasma spraying”, Light Metals 2005, ed. H. Kvande (TMS, Warrendale, Pa), pp. 785–788

    Google Scholar 

  28. J. A. Sekhar and V. de Nora, “application of refractory protective coatings on the surface of electrolytic cell components”, US patent 6,402,926 (17 June 1996)

    Google Scholar 

  29. A. A. Mirchi and J. Bergeron, “A method for providing a protective coating for carbonaceous components of an electrolysis cell”, US patent 6,475,358 (16 February 2000)

    Google Scholar 

  30. J.-P. Huni et al., ”Titanium diboride — aluminium oxalate slurry for refractory coatings on components of an aluminium electrolysis cell”, WO patent 01/061,077 (16 February 2000)

    Google Scholar 

  31. J. A. Sekhar, J.-J. duruz and J. J. Liu, “Slurry and method for producing refractory boride bodies and coatings for aluminium electrowinning cell apparatus”, US patent 6,436,250 (20 October 1997)

    Google Scholar 

  32. V. de Nora and J.-J. Duruz, “Aluminium wettable protective coatings for carbon components used in metallurgical processes”, EP patent 1,240,118 (9 December 1999)

    Google Scholar 

  33. X.-X. Wang, “Processing and characterization of titanium boride — colloidal alumina coating on carbon cathode in Hall-Héroult cell”, University of Cincinnati, Cincinnati, Ohio, USA, Ph.D. Thesis 2000, 128 pp.

    Google Scholar 

  34. M. Dionne, “Characterization of the titanium diboride- carbon composite with liquid aluminium and the cryolite bath of the aluminium electrolysis cell”, Ecole polytechnique, Montreal, Quebec, Canada, Thesis 2001, 382 pp.

    Google Scholar 

  35. J. Fang et al., “The TiB2-carbon composites sintered at moderate low temperature used as wettable cathode for aluminium electrolysis”, J. Cent. South Univ. Technol. 34 (2003) 1, pp. 24–27

    Google Scholar 

  36. X.-L. Duan, “Study on expansibility of TiB2-C compound and Na penetration in electrolysation”, J. Mater. Metall. 4 (2004) 1, pp. 30–33

    Google Scholar 

  37. J. Lie, “Effect of TiB2-content on resistance to sodium penetration of TiB2/C cathode composites for aluminium electrolysis”, J. Cent. S. Univ. Technol. 11 (2004) 4, pp. 400–404

    Article  Google Scholar 

  38. Q. Li et al., “The effect of sodium-containing additives on the sodium-penetration resistance of TiB2/C composite cathode in aluminium electrolysis”, Light Metals 2005, ed. H. Kvande (TMS, Warrendale, Pa.), pp. 789–791

    Google Scholar 

  39. J. Li, “Technological progress in Chinese primary aluminium industry and the characteristics of Chinese technologies”, Proc. Int. Forum on Aluminium, Shanghai Future Exchange, May 2005, pp. 111–127

    Google Scholar 

  40. M. O. Ibrahiem, T. Fosnaes and H. A. Øye, “Stability of TiB2-C composite coatings”, Light Metals 2006, ed. T. J. Galloway (TMS, Warrendale, Pa.), pp. 691–696

    Google Scholar 

  41. J. Lie, “Electrical resistivity of TiB2/C composite cathode coating for aluminium electrolysis”, J. Centr. South Univ. Technol. 13 (2006) 3, pp. 209–213

    Article  Google Scholar 

  42. M. O. Ibrahiem, T. Fosnaes and H. A. Øye, “Chemical stability of pitch-based TiB2-C coatings on carbon cathodes”, Light Metals 2007, ed. M. Sorlie (TMS, Warrendale, Pa.), pp. 1041–1046

    Google Scholar 

  43. B. Ren et al., “Application of TiB2 coating cathode blocks made by vibration moulding for 300 kA aluminium reduction cells”, Light Metals 2007, ed. M. Sørlie (TMS, Warrendale, Pa.), pp. 1047–1050

    Google Scholar 

  44. Y. Ban et al., “Application of TiB2/C composite cathode coating solidified at ambient temperature in 300 kA prebaked aluminium reduction cells”, ed. M. Sørlie (TMS, Warrendale, Pa.), pp. 1051–1054

    Google Scholar 

  45. J. Xue, Q. Liu and W. Ou, “Sodium expansion in carbon/TiB2 cathodes during aluminium electrolysis”, Light Metals 2007, ed. M. Sørlie (TMS, Warrendale, Pa.), pp. 1061–1065

    Google Scholar 

  46. Y. Wang et al., “Study on expansion of TiB2/C compound cathode and sodium penetration during electrolysis”, Light Metals 2007, ed. M. Sørlie (TMS, Warrendale, Pa.), pp. 1067–1070

    Google Scholar 

  47. M. O. Ibrahiem, T. Fosnaes and H.A. Øye, “Properties of pitch and furan-based TiB2-C cathodes”, Light Metals 2008, ed. D. H. de Young (TMS, Warrendale, Pa.) pp. 1013.1018

    Google Scholar 

  48. J. Xue, Q. Liu and B. Li, “Creep deformation in TiB2/C composite cathode materials for aluminium electrolysis”, Light Metals 2008, ed. D. H. de Young (TMS, Warrendale, Pa.) pp. 1023–1027

    Google Scholar 

  49. X.-J. Lu et al., “Effects of grain graduation on tapped packing efficiency in preparing TiB2/C composite material for aluminium electrolysis”, Light Metals 2008, ed. D. H. de Young (TMS, Warrendale, Pa.) pp. 1033–1036

    Google Scholar 

  50. X.-L. Lü et al., “Effects of pitches modification on properties of TiB2/C composite cathodes”, Light Metals 2009, ed. G. Bearne (TMS, Warrendale, Pa.), pp. 1145–1149

    Google Scholar 

  51. J. Xue et al., “Analysis of sodium and cryolite bath penetration in the cathodes used for aluminium electrolysis”, Light Metals 2009, ed. G. Bearne (TMS, Warrendale, Pa.), pp. 1177–1181

    Google Scholar 

  52. Q. Y. Li, “Effect of TiB2 coating on evolution of cathode lining during the process of primary aluminium production”, Metallurgical and Materials Transactions A38 (2007) 13, pp. 2358–2361

    Article  Google Scholar 

  53. Q. S. Liu, “Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminium electrolysis”, J. Univ. of Scienc. Technol. Beijing 30 (2008) 4, pp. 403–407

    Google Scholar 

  54. J. Xue, et al., “Sodium penetration into carbon-based cathodes during aluminium electrolysis”, Light Metals 2006, ed. T. J. Galloway (TMS, Warrendale, Pa.), pp. 651–654

    Google Scholar 

  55. Y.-Q. Lai et al, “Influences of different collector bar installations on cathode current distribution of drained cell”, Chin. J. Nonferrous Met. 13 (2003) 4, pp. 1017–1020

    Google Scholar 

  56. Y.-Q. Lai et al., “Heat balance simulation of drained aluminium reduction cell”, Trans. Nonferrous Met. Soc. China 13 (2003) 5, pp. 1199–1202

    Google Scholar 

  57. W. Liu, “2D finite element analysis of thermal balance for drained aluminium reduction cells”, J. Central South Univ. of Technology 14 (2007) 6, pp. 783–787

    Article  Google Scholar 

  58. X.-P. Li, “Mathematical simulation of gas induced bath flow in drained aluminium reduction cell”, Trans. Nonferrous Metals Soc. China 14 (2004) 6, pp. 1221–1226

    Google Scholar 

  59. C.-W. Jiang et al., “A method of determining and designing the drained slope in drained aluminium reduction cells”, J. Cent. S. Univ. Technol. 10 (2003) 1, pp. 74–77

    Google Scholar 

  60. N. Feng et al, “Electrolysis test of a 1350 A drained cathode reduction cell with TiB2-coated cathode”, Light Metals 2006, ed. T. J. Galloway (TMS, Warrendale, Pa.), pp. 505–509

    Google Scholar 

  61. E. W. Andrews, G. J. Hardie and M. J. Taylor, “Implementation of TiB2 composite coated cathode technology in aluminium reduction cells”, Proc. VII Australasian aluminium Smelting Technology Conference and workshop, Melbourne, Australia, 11–16 November 2001, 1 p.

    Google Scholar 

  62. Z. Wang et al., “Penetration of sodium and electrolyte to vibratory compaction TiB2 cathode”, Light Metals 2008, ed. D. H. de Young (TMS, Warrendale, Pa.), pp. 1029–1032

    Google Scholar 

  63. Y.-Q. Lai, Q.-Y. Li and Z. chen, “Effects of preheating and start-up procedure on pot life of prebaked anode aluminium reduction cells”, Min. Metall. Eng. 22 (2002) 4, pp. 76–78

    Google Scholar 

  64. V. de Nora et al., “Start-up of eletrowinning cells”, US patent 6,338,785 (17 October 1997)

    Google Scholar 

  65. V. de Nora and J.-J. Duruz, “A drained cathode cell for the production of aluminium”, EP patent 0,996,773 (7 July 1997)

    Google Scholar 

  66. V. de Nora and J.-J. Duruz, “Drained cathode aluminium electrowinning cell with alumina distribution”, US patent 6,436,273 (11 August 2000)

    Google Scholar 

  67. V. de Nora, “Cell for the electrowinning of aluminium operating with metal based anodes”, WO patent 02/070,785 (7 March 2001)

    Google Scholar 

  68. T. T. Nguyen and V. de Nora, “Metal-based anodes for aluminium production cells”, WO patent 02/070,786 (7 March 2001)

    Google Scholar 

  69. G. Berclaz and V. de Nora, “Aluminium production cell and cathode”, US patent 6,358,393 (23 May 1997)

    Google Scholar 

  70. V. de Nora, “Aluminium electrowinning cells with inclined cathodes”, WO patent 03/023,091 (7 September 2001)

    Google Scholar 

  71. C. W. Brown, “Wetted cathodes for low-temperature aluminium smelting: final report”, STAR 41 (2003) 6.

    Google Scholar 

  72. Anonymous, “Aluminum: revolutionizing the way aluminium is made”, OIT Times Turning Ind. Visions into Real. 4 (2001) 3, p. 3

    Google Scholar 

  73. C. W. Brown and P. B. Frizzle, “Low temperature aluminium reduction cell using hollow cathode”, US patent 6,436,272 (4 October 2000)

    Google Scholar 

  74. T. R. Beck and C. W. Brown, “Aluminum low temperature smelting cell metal collection”, US patent 6,419,812 (27 November 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Pawlek, R.P. (2016). Wettable Cathodes: An Update. In: Tomsett, A., Johnson, J. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48200-2_157

Download citation

Publish with us

Policies and ethics