Skip to main content
Log in

Corrosion Behavior and Failure Prediction of YSZ Coatings Under CMAS Attack

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In aeroengines, thermal barrier coatings (TBCs) are usually utilized to protect the hot components from hot gases. The ability to predict the TBC failure is crucial to avoid economic losses. In this study, plasma-sprayed 8 wt.% yttria-stabilized zirconia (YSZ) coatings were subjected to corrosion by calcium–magnesium–aluminosilicate (CMAS, 33CaO–9MgO–13Al2O3–45SiO2) glass at 1250 °C. After the test, two morphologies were observed on the coating surface. At the sample edges, the coating underwent over-sintering because of the locally high temperature: the molten glass easily penetrated the YSZ layer and reacted with it; and iron spinel was detected on the surface. In the sample central region submitted to a relatively lower temperature, a dense layer consisting of both CMAS glass and YSZ was formed. The analysis of the self-luminescence of the YSZ coating after corrosion revealed the presence of sintered regions on the coating surface, which increased as the corrosion temperature increased. This came with a decrease in the coating luminescence. This study shows that the self-luminescence properties can be used to monitor the degree of corrosion and predict the failure of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.F. Zhang, K.S. Zhou, M. Liu, C.G. Deng, C.M. Deng, S.P. Niu, S.M. Xu, and Y.F. Su, CMAS Corrosion And Thermal Cycle of Al-modified PS-PVD Environmental Barrier Coating, Ceram. Int., 2018, 44(13), p 15959-15964

    Article  CAS  Google Scholar 

  2. A.R. Krause, B.S. Senturk, H.F. Garces, G. Dwivedi, A.L. Ortiz, S. Sampath, and N.P. Padture, 2ZrO2·Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: part I, Optical Basicity Considerations and Processing, J. Am. Ceram. Soc., 2014, 97(12), p 3943-3949

    Article  CAS  Google Scholar 

  3. B.S. Senturk, H.F. Garces, A.L. Ortiz, G. Dwivedi, S. Sampath, and N.P. Padture, CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ Solute Additions, J. Therm. Spray Technol., 2014, 23(4), p 708-715

    Article  CAS  Google Scholar 

  4. H.Z. Zheng, Z. Chen, G.F. Li, X.Y. Shu, and P. Peng, High-Temperature Corrosion Mechanism of YSZ Coatings Subject to Calcium–Magnesium–Aluminosilicate (CMAS) Deposits: First-principles Calculations, Corros. Sci., 2017, 126, p 286-294

    Article  CAS  Google Scholar 

  5. M.D. Chambers and D.R. Clarke, Effect of long Term, High Temperature Aging on Luminescence from Eu-doped YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201(7), p 3942-3946

    Article  CAS  Google Scholar 

  6. B.P. Zhang, W.J. Song, and H.B. Guo, Infiltration and Interaction Behavior of CMAS Towards Columnar YSZ Coatings Deposited by Plasma Spray Physical Vapour, J. Eur. Ceram. Soc., 2018, 38, p 3564-3572

    Article  CAS  Google Scholar 

  7. L. Chen, G.J. Yang, C.X. Li, and C.J. Li, Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings, J. Therm. Spray Technol., 2016, 25, p 959-970

    Article  Google Scholar 

  8. G.R. Li and G.J. Yang, Understanding of Degradation-resistant Behavior of Nanostructured Thermal Barrier Coatings with Bimodal Structure, J. Mater. Sci. Technol., 2019, 35, p 231-238

    Article  Google Scholar 

  9. W.W. Zhang, G.R. Li, Q. Zhang, and G.J. Yang, Multiscale Pores in TBCs for Lower Thermal Conductivity, J. Therm. Spray Technol., 2017, 26, p 1183-1197

    Article  Google Scholar 

  10. L. Chen, G.J. Yang, and C.X. Li, Formation of Lamellar Pores for Splats via Interfacial or Sub-interfacial Delamination at Chemically Bonded Region, J. Therm. Spray Technol., 2017, 26(3), p 315-326

    Article  CAS  Google Scholar 

  11. Y.X. Zhao, D.C. Li, X.H. Zhong, H.Y. Zhao, L. Wang, F. Shao, C.G. Liu, and S.Y. Tao, Thermal Shock Behaviors of YSZ Thick Thermal Barrier Coatings Fabricated by Suspension and Atmospheric Plasma Spraying, Surf. Coat. Technol., 2014, 249, p 48-55

    Article  CAS  Google Scholar 

  12. C.U. Hardwicke and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22, p 564-576

    Article  Google Scholar 

  13. Y.X. Kang, Y. Bai, C.G. Bao, Y. Wang, H.Y. Chen, Y. Gao, and B.Q. Li, Defects/CMAS Corrosion Resistance Relationship in Plasma Sprayed YPSZ Coating, J. Alloy. Compd., 2017, 694, p 1320-1330

    Article  CAS  Google Scholar 

  14. J. Wu, H. Guo, Y. Gao, and S. Gong, Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits, J. Eur. Ceram. Soc., 2011, 31, p 1881-1888

    Article  CAS  Google Scholar 

  15. A. Aygun, A.L. Vasiliev, and N.P. Padture, Novel Thermal Barrier Coatings that are Resistant to High-temperature Attack by Glassy Deposits, Acta Mater., 2007, 55, p 6734-6745

    Article  CAS  Google Scholar 

  16. L.L. Cai, W. Ma, B.L. Ma, F. Guo, W.D. Chen, H.Y. Dong, and Y.C. Shuang, Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS), J. Therm. Spray Technol., 2017, 26(6), p 1076-1083

    Article  CAS  Google Scholar 

  17. Y.X. Kang, Y. Bai, G.Q. Du, F.L. Yu, C.G. Bao, Y.T. Wang, and F. Ding, High Temperature Wettability Between CMAS and YSZ Coating with Tailored Surface Microstructures, Mater. Lett., 2018, 229, p 40-43

    Article  CAS  Google Scholar 

  18. T. Narita, K.Z. Thosin, L. Fengqun, S. Hayashi, H. Murakami, B. Gleeson, and D. Young, Development of Re-based Diffusion Barrier Coatings On Nickel Based Superalloys, Mater. Corros., 2005, 56(12), p 923-929

    Article  CAS  Google Scholar 

  19. H.J.T. Ellingham, Transactions and Communications, J. Soc. Chem. Ind., 1944, 63, p 125

    Article  CAS  Google Scholar 

  20. Z.Y. Wei, H.N. Cai, R.X. Feng, and H. Zhang, The Combined Effect of Creep and TGO Growth on the Cracking Driving Force in a Plasma-Sprayed Thermal Barrier System, J. Therm. Spray Technol., 2019, 28(5), p 1000-1016

    Article  Google Scholar 

  21. C.J. Li, H. Dong, H. Ding, G.J. Yang, and C.X. Li, The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling test by TGO Effects, J. Therm. Spray Technol., 2017, 26(3), p 378-387

    Article  CAS  Google Scholar 

  22. W.R. Chen, X. Wu, and D. Dudzinski, Influence of Thermal Cycle Frequency on the TGO Growth and Cracking Behaviors of an APS-TBC, J. Therm. Spray Technol., 2012, 21(6), p 1294-1299

    Article  CAS  Google Scholar 

  23. Z.H. Gao, G. Jin, Z.B. Cai, Y.D. Fu, and X.F. Cui, Thermal Cycling Property of Supersonic Atmospheric Plasma Sprayed Thermal Barrier Coatings Reinforced by Ni-coated YSZ Fibers, Surf. Coat. Technol., 2017, 320, p 226-229

    Article  CAS  Google Scholar 

  24. D. Ghosh, S. Das, H. Roy, and S.K. Mitra, Oxidation Behaviour of Nanostructured YSZ Plasma Sprayed Coated Inconel Alloy, Surf. Eng., 2016, 34(1), p 22-29

    Article  Google Scholar 

  25. P.J. He, H. Sun, Y.F. Gui, F. Lapostolle, H.L. Liao, and C. Coddet, Microstructure and Properties of Nanostructured YSZ Coating Prepared by Suspension Plasma Spraying at Low Pressure, Surf. Coat. Technol., 2014, 261, p 318-326

    Article  Google Scholar 

  26. P. Sokołowski, L. Łatka, L. Pawłowski, A. Ambroziak, S. Kozerski, and B. Nait-Ali, Characterization of Microstructure and Thermal Properties of YCSZ Coatings Obtained by Suspension Plasma Spraying, Surf. Coat. Technol., 2014, 268, p 147-152

    Article  Google Scholar 

  27. Y. Bai, Y.H. Wang, Z. Wang, Q.Q. Fu, and Z.H. Han, Influence of Unmelted Nanoparticles on Properties of YSZ Nano-Coatings, Surf. Eng., 2014, 30(8), p 568-572

    Article  CAS  Google Scholar 

  28. P. Jana, P.S. Jayan, S. Mandal, and K. Biswas, Thermal Cycling Life and Failure Analysis of Rare Earth Magnesium Hexa Aluminate Based Advanced Thermal Barrier Coatings at 1400 °C, Surf. Coat. Technol., 2017, 328, p 398-409

    Article  CAS  Google Scholar 

  29. O. Khanali, M. Rajabi, S. Baghshahi, and S. Ariaee, Suspension Medium’s Impact on the EPD of Nano-YSZ on Fecralloy, Surf. Eng., 2016, 33(4), p 310-318

    Article  Google Scholar 

  30. T. Mathews, B.P. Dhonge, R. Krishnan, S. Dash, A.K. Tyagi, and B. Raj, Open Atmosphere Laser Assisted Spray Pyrolysis Technique for Deposition of Al2O3 and Yttria Stabilised Zirconia Nanostructured Coatings, Surf. Eng., 2011, 27(6), p 407-409

    Article  CAS  Google Scholar 

  31. E.B. Copin, X. Massol, S. Amiel, T. Sentenac, Y.L. Maoult, and P. Lours, Novel Erbia-Yttria Co-doped Zirconia Fluorescent Thermal History Sensor, Smart Mater. Struct., 2017, 26(1), p 015001

    Article  Google Scholar 

  32. J. Mao, Z.Q. Deng, M. Liu, C.M. Deng, J.B. Song, and K. Yang, Regional Characteristics of YSZ Coating Prepared by Expanded Ar/He/H Plasma Jet at Very Low Pressure, Surf. Coat. Technol., 2017, 328, p 240-247

    Article  CAS  Google Scholar 

  33. C.L. Li, W. Wang, S.L. Tan, and S.G. Song, Bond Strength and Oxidation Resistance of YSZ/(Ni, Al) Composite Coatings, Surf. Eng., 2014, 30(9), p 619-623

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province (Grant No. 2019-ZD-0283), the China Postdoctoral Science Foundation (Grant No. 2017M621128) and the High-Level Talent Innovation Support Program of Dalian, Liaoning Province (Grant No. 2017RQ056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Zhang, J. & Li, T. Corrosion Behavior and Failure Prediction of YSZ Coatings Under CMAS Attack. J Therm Spray Tech 30, 708–715 (2021). https://doi.org/10.1007/s11666-020-01141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01141-3

Keywords

Navigation