Skip to main content
Log in

Fabrication and Corrosion Resistance of Plasma-Sprayed Glass-Powder-Doped Al2O3-13 wt.%TiO2 Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Silicate-based glass powder was prepared and doped into commercially used Al2O3-13 wt.%TiO2 powder (AT13) for plasma spraying. The morphology and phase structure of the glass-doped AT13 coating (G-AT13) were characterized by scanning electron microscopy/energy-dispersive spectroscopy and x-ray diffraction analysis. The results revealed that the glass particles were able to fully spread to adapt to the roughness of the ceramic sheet layer and fill the pores between the ceramic particles, thereby reducing defects such as pores and microcracks inside the coating layer. Compared with the AT13 coating, the G-AT13 coating was more compact with lower porosity of 4.2% and higher microhardness of 1938 HV. After 2400 h of immersion corrosion in 3.5 wt.% NaCl solution, the AT13 coatings displayed severe corrosion with cracks and rust on the surface, whereas the G-AT13 coating only exhibited a small amount of rust on the surface. Electrochemical measurements (Tafel polarization and electrochemical impedance spectroscopy) also indicated that the G-AT13 coating possessed higher corrosion resistance than the pure AT13 coating. Doping of glass into the ceramic coatings therefore improved the long-term corrosion resistance of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Abdoli, J. Huang, and H. Li, Electrochemical Corrosion Behaviors of Aluminum-Based Marine Coatings in the Presence of Escherichia coli Bacterial Biofilm, Mater. Chem. Phys., 2016, 173, p 62-69

    Article  CAS  Google Scholar 

  2. X. Zhang, Y. Ma, B. Zhang, Y. Li, M.K. Lei, F.H. Wang, M.G. Zhu, and X.C. Wang, Corrosion Behavior of Hot-Pressed Nanocrystalline NdFeB Magnet in a Simulated Marine Atmosphere, Corros. Sci., 2014, 87, p 156-164

    Article  CAS  Google Scholar 

  3. F. Shao, K. Yang, H.Y. Zhao, C.G. Liu, L. Wang, and S.Y. Tao, Effects of Inorganic Sealant and Brief Heat Treatments on Corrosion Behavior of Plasma Sprayed Cr2O3–Al2O3 Composite Ceramic Coatings, Surf. Coat. Technol., 2015, 276, p 8-15

    Article  CAS  Google Scholar 

  4. J. Huang, Y. Liu, J.H. Yuan, and H. Li, Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-corrosion and Wear Performances, J. Therm. Spray Technol., 2014, 23, p 676-683

    Article  CAS  Google Scholar 

  5. S.T. Aruna, N. Balaji, J. Shedthi, and V.K.W. Grips, Effect of Critical Plasma Spray Parameters on the Microstructure, Microhardness and Wear and Corrosion Resistance of Plasma Sprayed Alumina Coatings, Surf. Coat. Technol., 2012, 208, p 92-100

    Article  CAS  Google Scholar 

  6. L. Cai, W. Ma, B. Ma, F. Guo, W.D. Chen, H.Y. Dong, and Y.C. Shuang, Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Subjected to CaO-MgO-Al2O3-SiO2 (CMAS), J. Therm. Spray Technol., 2017, 26(6), p 1076-1083

    Article  CAS  Google Scholar 

  7. E. Celika, I. Ozdemir, E. Avcic, and Y. Tsunekawa, Corrosion Behaviour of Plasma Sprayed Coatings, Surf. Coat. Technol., 2005, 193, p 297-302

    Article  Google Scholar 

  8. E. Bakan and R. Vaben, Ceramic Topcoats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26, p 992-1010

    Article  CAS  Google Scholar 

  9. M.P. Schmitt, J.M. Schreiber, A.K. Rai, T.J. Eden, and D.E. Wolfe, Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability, J. Therm. Spray Technol., 2017, 26(6), p 1062-1075

    Article  CAS  Google Scholar 

  10. S.W. Yao, G.J. Yang, C.X. Li, and C.J. Li, Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature, J. Therm. Spray Technol., 2018, 27(1–2), p 25-34

    Article  CAS  Google Scholar 

  11. S.A. Galedari, A. Mahdavi, F. Azarmi, Y. Huang, and A. McDonald, A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures, J. Therm. Spray Technol., 2019, 28(4), p 645-677

    Article  CAS  Google Scholar 

  12. B. Singh, G. Singh, and B.S. Sidhu, Analysis of Corrosion Behavior and Surface Properties of Plasma-Sprayed HA/Ta Coating on CoCr Alloy, J. Therm. Spray Technol., 2018, 27(8), p 1401-1413

    Article  CAS  Google Scholar 

  13. Y. Wang, W. Tian, T. Zhang, and Y. Yang, Microstructure, Spallation and Corrosion of Plasma Sprayed Al2O3–13%TiO2 Coatings, Corros. Sci., 2009, 51, p 2924-2931

    Article  CAS  Google Scholar 

  14. S. Uozato, K. Nakata, and M. Ushio, Corrosion and Wear Behaviors of Ferrous Powder Thermal Spray Coatings on Aluminum Alloy, Surf. Coat. Technol., 2003, 169, p 691-694

    Article  Google Scholar 

  15. D.P. Monaghan, D.G. Teer, P.A. Logan, K.C. Laing, R.I. Bates, and R.D. Arnell, An Improved Method for the Deposition of Corrosion-Resistant Aluminium Coatings for Aerospace Applications, Surf. Coat. Technol., 1993, 60, p 592-598

    Article  CAS  Google Scholar 

  16. P. Shi, W.F. Ng, M.H. Wong, and F.T. Cheng, Improvement of Corrosion Resistance of Pure Magnesium in Hanks’ Solution by Microarc Oxidation with Sol–Gel TiO2 Sealing, J. Alloys Compd., 2009, 469, p 286-292

    Article  CAS  Google Scholar 

  17. M.J. Kadhim, S.I. Al-Rubaiey, and A.S. Hammood, The Influence of Laser Specific Energy on Laser Sealing of Plasma Sprayed Yttria Partially Stabilized Zirconia Coating, Opt. Laser Eng., 2013, 51(2), p 159-166

    Article  Google Scholar 

  18. G.Z. Xie, X.Y. Lin, K.Y. Wang, X.Y. Mo, D.J. Zhang, and P.H. Lin, Corrosion Characteristics of Plasma-Sprayed Ni-Coated WC Coatings Comparison with Different Post-Treatment, Corros. Sci., 2007, 49, p 662-671

    Article  CAS  Google Scholar 

  19. W. Tian, Y. Wang, T. Zhang, and Y. Yang, Sliding Wear and Electrochemical Corrosion Behavior of Plasma Sprayed Nanocomposite Al2O3–13%TiO2 Coatings, Mater. Chem. Phys., 2009, 118, p 37-45

    Article  CAS  Google Scholar 

  20. F. Vargas, H. Ageorges, P. Fauchais, M.E. Lopez, and J.A. Calderon, Permeation of Saline Solution in Al2O3-13wt.%TiO2 Coatings Elaborated by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2013, 220, p 85-89

    Article  CAS  Google Scholar 

  21. H.P. Li, Z.Q. Ke, J. Li, L.H. Xue, and Y.W. Yan, An Effective Low-Temperature Strategy for Sealing Plasma Sprayed Al2O3-Based Coatings, J. Eur. Ceram. Soc., 2018, 38(4), p 1871-1877

    Article  CAS  Google Scholar 

  22. J.J. Zhang, Z.H. Wang, P.H. Lin, W.H. Lu, Z.H. Zhou, and S.Q. Jiang, Effect of Sealing Treatment on Corrosion Resistance of Plasma Sprayed NiCrAl/Cr2O3-8wt.%TiO2 Coating, J. Therm. Spray Technol., 2011, 20(3), p 508-513

    Article  Google Scholar 

  23. E. Vetrivendan, G. Thendral, A.R. Shankar, C. Mallika, and U.K. Mudali, Aluminum Phosphate Sealing to Improve Insulation Resistance of Plasma-Sprayed Alumina Coating, Mater. Manuf. Process., 2017, 32(12), p 1435-1441

    Article  CAS  Google Scholar 

  24. Z. Liu, D. Yan, Y. Dong, Y. Yang, Z. Chu, and Z. Zhang, The Effect of Modified Epoxy Sealing on the Electrochemical Corrosion Behaviour of Reactive Plasma-Sprayed TiN Coatings, Corros. Sci., 2013, 75, p 220-227

    Article  CAS  Google Scholar 

  25. M. Baricco, S. Enzo, T.A. Baser, M. Satta, G. Vaughan, and A.R. Yavari, Amorphous/Nanocrystalline Composites Analysed by the Rietveld Method, J. Alloys Compd., 2010, 495, p 377-381

    Article  CAS  Google Scholar 

  26. F. Mansfeld, Tafel Slopes and Corrosion Rates Obtained in the Pre-Tafel Region of Polarization Curves, Corros. Sci., 2005, 47, p 3178-3186

    Article  CAS  Google Scholar 

  27. J.R. Galvele, Tafel’s Law in Pitting Corrosion and Crevice Corrosion Susceptibility, Corros. Sci., 2005, 47, p 3053-3067

    Article  CAS  Google Scholar 

  28. E. McCafferty, Validation of Corrosion Rates Measured by the Tafel Extrapolation Method, Corros. Sci., 2005, 47, p 3202-3215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Foundation for Universities from the Education Bureau of Liaoning Province (no. 2017J039), China Postdoctoral Science Foundation (no. 2017M621128), and High-Level Talent Innovation Support Program of Dalian (no. 2017RQ056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, J., Zhang, H. et al. Fabrication and Corrosion Resistance of Plasma-Sprayed Glass-Powder-Doped Al2O3-13 wt.%TiO2 Coatings. J Therm Spray Tech 29, 500–509 (2020). https://doi.org/10.1007/s11666-019-00978-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00978-7

Keywords

Navigation