Skip to main content
Log in

Antibacterial Efficacy of Wire Arc Sprayed Copper Coatings Against Various Pathogens

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The antimicrobial effect of copper (Cu) as well as its potentiality to reduce healthcare-associated infections is well recognized. In this study, a twin wire arc spray gun has been used to produce antibacterial copper coatings on stainless-steel (316L) surfaces. The thickness of coating was 120 ± 30 μm in average. In parallel, series of coating formation simulations were made using Comsol Multiphysics. The coating morphology was examined by scanning electron microscope (SEM) and its structure determined by x-ray diffraction (XRD). Surface roughness measurements were carried out on as-sprayed and polished surfaces by using a 3-D Profilometer. The coating antibacterial efficacy has been investigated considering standard and clinically isolated cultures such as standard ATCC 25922 Escherichia coli (E. coli), standard ATCC 29213 Staphylococcus Aureus (Staph. Aureus), clinically isolated Pseudomonas aeruginosa, Vancomycin-resistant Enterococcus (VRE) and Methicillin-resistant Staphylococcus aureus (MRSA). The predictions of simulations matched with the monitored data with an error below 10%. The coatings exhibited excellent antibacterial properties for all the pathogen types used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.D. Salgado, K.A. Sepkowitz, J.F. John, J.R. Cantey, H.H. Attaway, K.D. Freeman, P.A. Sharpe, H.T. Michels, and M.G. Schmidt, Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit, 2013, 34(5), p 479-486

    Google Scholar 

  2. G. Grass, C. Rensing, and M. Soloz, Metallic Copper as an Antimicrobial Surface, Appl. Environ. Microbiol., 2011, 77(5), p 1541-1547

    Article  CAS  Google Scholar 

  3. R. Sharan, S. Chhibber, and R.H. Reed, A Murine Model to Study the Antibacterial Effect of Copper on Infectivity of Salmonella Enterica Serovar Typhimurium, Int. J. Environ. Res. Public Health, 2011, 8(1), p 21-36

    Article  CAS  Google Scholar 

  4. J. O’Gorman and H. Humphreys, Application of Copper to Prevent and Control Infection. Where Are We Now?, J. Hosp. Infect., 2012, 81(4), p 217-223

    Article  Google Scholar 

  5. T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4947-4960

    Article  CAS  Google Scholar 

  6. S. Salavati, T.W. Coyle, and J. Mostaghimi, Twin Wire Arc Spray Process Modification for Production of Porous Metallic Coatings, Surf. Coat. Technol., 2016, 286(1), p 16-24

    Article  CAS  Google Scholar 

  7. A. Abedini, A. Pourmousa, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on the Properties of Coatings and Splats Deposited by Wire Arc Spraying, Surf. Coat. Technol., 2006, 201(6), p 3350-3358

    Article  CAS  Google Scholar 

  8. V.K. Champagne and D.J. Helfritch, A Demonstration of the Antimicrobial Effectiveness of Various Copper Surfaces, J. Biol. Eng., 2013, 7(1), p 1-6

    Article  CAS  Google Scholar 

  9. J.R. Wilson, The Structure of Liquid Metals and Alloys, J. Metall. Rev., 1965, 10(1), p 381-590

    Article  Google Scholar 

  10. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas Fundamentals and Applications, Vol 1, Springer, Berlin, 1994, p 413-417

    Google Scholar 

  11. A.P. Abkenar, Wire Arc Spraying: Particle Production, Transport and Deposition, Ph.D. Thesis, University of Toronto, p 72-74. 2007. https://www.collectionscanada.gc.ca/obj/thesescanada/vol2/002/NR39723.PDF. Accessed 16 Sept 2018

  12. R. Suryanarayanan, Plasma Spraying Theory and Applications, World Scientific Publishing, Singapore, 1993, p 121-135ISBN 981-02-1363-8

    Book  Google Scholar 

  13. T. Blackburn, Test Method for the Continuous Reduction of Bacterial Contamination on Copper Alloy Surfaces. 800R09004, Enviromental Protection Agency (EPA), 2009. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1003RIK.txt. Accessed 17 Sept 2018

  14. X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, Effect of Nozzle Configuration, Gas Pressure, and Gas Type on Coating Properties in Wire Arc Spray, J. Therm. Spray Technol., 1999, 8(4), p 565-575

    Article  Google Scholar 

  15. M.P. Planche, H. Liao, and C. Coddet, Relationships Between in-Flight Particle Characteristics and Coating Microstructure with a Twin Wire Arc Spray Process and Different Working Conditions, Surf. Coat. Technol., 2004, 182(2), p 215-226

    Article  CAS  Google Scholar 

  16. O. Sharifahmadian, H.R. Salimijazi, M.H. Fathi, and J. Mostaghimi, Relationship Between Surface Properties and Antibacterial Behavior of Wire Arc Spray Copper Coatings, Surf. Coat. Technol., 2013, 223(1), p 74-79

    Article  CAS  Google Scholar 

  17. R. Lupoi and W. O’Neill, Deposition of Metallic Coatings on Polymer Surfaces Using Cold Spray, Surf. Coat. Technol., 2010, 205(7), p 2167-2173

    Article  CAS  Google Scholar 

  18. S. Zimmermann, E. Vogli, M. Kauffeldt, M. Abdulgader, B. Krebs, B. Rüther, K. Landes, J. Schein, and W. Tillmann, Supervision and Measuring of Particle Parameters During the Wire-Arc Spraying Process with the Diagnostic Systems Accuraspray-g3 and LDA (Laser-Doppler-Anemometry), J. Therm. Spray Technol., 2010, 19(4), p 745-755

    Article  CAS  Google Scholar 

  19. S. Oukach, H. Hamdi, M. El Ganaoui, and B. Pateyron, Numerical Study of the Spreading and Solidification of a Molten Particle Impacting Onto a Rigid Substrate Under Plasma Spraying Conditions, Therm. Sci., 2015, 19(1), p 277-284

    Article  Google Scholar 

  20. M. Pasandideh-Fard, R. Bhola, S. Chandra, and J. Mostaghimi, Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments, Int. J. Heat Mass Transf., 1998, 41(19), p 2929-2945

    Article  CAS  Google Scholar 

  21. O. Sharifahmadian, H.R. Salimijazi, M.H. Fathi, J. Mostaghimi, and L. Pershin, Study of the Antibacterial Behavior of Wire Arc Sprayed Copper Coatings, J. Therm. Spray Technol., 2013, 22(2–3), p 371-379

    Article  CAS  Google Scholar 

  22. G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker, Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications, Int. J. Antimicrob. Agents, 2009, 33(6), p 587-590

    Article  CAS  Google Scholar 

  23. A. Simchi, E. Tamjid, F. Pishbin, and A.R. Boccaccini, Recent Progress in Inorganic and Composite Coatings with Bactericidal Capability for Orthopaedic Applications, Nanomedicine, 2011, 7(1), p 22-39

    Article  CAS  Google Scholar 

  24. H. Gutierrez, T. Portman, V. Pershin, and M. Ringuette, Evaluation of Biocidal Efficacy of Copper Alloy Coatings in Comparison with Solid Metal Surfaces: Generation of Organic Copper Phosphate Nanoflowers, J. Appl. Microbiol., 2013, 114(3), p 680-687

    Article  CAS  Google Scholar 

  25. S.L. Warnes, J.C. Highmore, and C.W. Keevil, Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces: Implications for Public Health, Am. Soc. Microbiol. mBio, 2012, 3(6), p 1-10

    Google Scholar 

  26. J. Hemin, Y. Zhiming, and L. Li, Antibacterial Properties and Corrosion Resistance of Cu and Ag/Cu Porous Materials, J. Biomed. Mater. Res. Part A, 2008, 87A(1), p 33-37

    Article  CAS  Google Scholar 

  27. S.L. Warnes and C.W. Keevil, Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Contact, Appl. Environ. Microbiol., 2011, 77(17), p 6049-6059

    Article  CAS  Google Scholar 

  28. C.E. Santo, N. Taudte, D.H. Nies, and G. Grass, Contribution of Copper Ion Resistance to Survival of Escherichia coli on Metallic Copper Surfaces, Appl. Environ. Microbiol., 2008, 74(4), p 977-986

    Article  CAS  Google Scholar 

  29. D.J. Weber and W.A. Rutala, Self-Disinfecting Surfaces: Review of Current Methodologies and Future Prospects, Am. J. Infect. Control, 2013, 41(5), p 31-35

    Article  Google Scholar 

  30. E.R. Kenawy, S.D. Worley, and R. Broughton, The Chemistry And Applications of Antimicrobial Polymers: A State-of-The-Art Review, Biomacromolecules, 2007, 8(5), p 1359-1384

    Article  CAS  Google Scholar 

  31. K. Lewis and A.M. Klibanov, Surpassing Nature: Rational Design of Sterile-Surface Materials, Trends Biotechnol., 2005, 23(7), p 343-348

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Part of this study was funded by TUBITAK TEYDEB under the project number 7120870, which is greatly acknowledged. Authors also thank ITU BAP for their grant under the contract number of 38367. Authors extend their appreciation to Prof. Dr. Gultekin Goller, Huseyin Sezer and Husnu Ozturk for their support in the SEM studies of the coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgul Keles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocaman, A., Keles, O. Antibacterial Efficacy of Wire Arc Sprayed Copper Coatings Against Various Pathogens. J Therm Spray Tech 28, 504–513 (2019). https://doi.org/10.1007/s11666-018-0824-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0824-x

Keywords

Navigation