Skip to main content
Log in

Fabrication of Superhydrophobic Ceramic Coatings via Solution Precursor Plasma Spray Under Atmospheric and Low-Pressure Conditions

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The plasma jet in the vacuum plasma spray process presents characteristics such as supersonic flow, expanded jet dimensions, and a smaller decay rate for jet velocity and temperature that are distinctly different from those of atmospheric plasma spray. In this work, a solution precursor vacuum plasma spray (SPVPS) process is described, which combines vacuum plasma spray with solution precursor as the feedstock. The deposition of superhydrophobic ceramic coatings via the SPVPS process is explored. Yb2O3 coatings are deposited by a radial injection of Yb(NO3)3 solution in the anode of an F4-VB torch operating under a pressure of 150-250 mbar. Coatings with different wetting behaviors were deposited by manipulating the process parameters of the SPVPS process. Solution precursor atmospheric plasma spray (SPAPS) is also applied to deposit superhydrophobic Yb2O3 coatings for comparison with the SPVPS process. The wetting behaviors of the coatings are characterized by water contact angle measurement, water roll-off test, and dynamic water impact test. The formation of different coating microstructures was explained via the different plasma jet characteristics, interactions of solution droplets and plasma, and droplets motions upon the impact on surface. The different wetting behaviors of coatings were correlated with the coating surface structures and topographies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.F. Smith, A.C. Hall, J.D. Fleetwood, and P. Meyer, Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community, Coatings, 2011, 1(2), p 117-132

    Article  Google Scholar 

  2. K. Von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD™, J. Therm. Spray Technol., 2010, 19(1–2), p 502-509

    Article  Google Scholar 

  3. H.S. Kim, B.G. Hong, and S.Y. Moon, Thick Tungsten Layer Coating on Ferritic-Martensitic Steel without Interlayer Using a DC Vacuum Plasma Spray and a RF Low Pressure Plasma Spray Method, Thin Solid Films, 2017, 623, p 59-64

    Article  Google Scholar 

  4. G. Mauer, M. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Novel Opportunities for Thermal Spray by PS-PVD, Surf. Coat. Technol., 2015, 268, p 52-57

    Article  Google Scholar 

  5. A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2012, 21(3-4), p 435-440

    Article  Google Scholar 

  6. R. Bolot, D. Sokolov, D. Klein, and C. Coddet, Nozzle Developments for Thermal Spray at Very Low Pressure, J. Therm. Spray Technol., 2006, 15(4), p 827-833

    Article  Google Scholar 

  7. S. Basu, E.H. Jordan, and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas, J. Therm. Spray Technol., 2008, 17(1), p 60-72

    Article  Google Scholar 

  8. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135

    Article  Google Scholar 

  9. F. Rousseau, S. Awamat, D. Morvan, J. Amouroux, and R. Mevrel, Deposition of Thick Oxide Layers from Solutions in a Low Pressure Plasma Reactor, Surf. Coat. Technol., 2007, 202(4–7), p 714-718

    Article  Google Scholar 

  10. L. Jia and F. Gitzhofer, Induction Plasma Synthesis of Nano-structured SOFCs Electrolyte Using Solution and Suspension Plasma Spraying: A Comparative Study, J. Therm. Spray Technol., 2010, 19(3), p 566-574

    Article  Google Scholar 

  11. F. Rousseau, C. Fourmond, F. Prima, M.V. Serif, O. Lavigne, D. Morvan, and P. Chereau, Deposition of Thick and 50% Porous YpSZ Layer by Spraying Nitrate Solution in a Low Pressure Plasma Reactor, Surf. Coat. Technol., 2011, 206(7), p 1621-1627

    Article  Google Scholar 

  12. J.L. Dorier, P. Guittienne, C. Hollenstein, M. Gindrat, and A. Refke, Mechanisms of Films and Coatings Formation from Gaseous and Liquid Precursors with Low Pressure Plasma Spray Equipment, Surf. Coat. Technol., 2009, 203(15), p 2125-2130

    Article  Google Scholar 

  13. M. Gindrat, H.M. Höhle, K. von Niessen, P. Guittienne, D. Grange, and C. Hollenstein, Plasma Spray-CVD: A New Thermal Spray Process to Produce Thin Films from Liquid or Gaseous Precursors, J. Therm. Spray Technol., 2011, 20(4), p 882-887

    Article  Google Scholar 

  14. M. Ma and R.M. Hill, Superhydrophobic Surfaces, Curr. Opin. Colloid Interface Sci., 2006, 11(4), p 193-202

    Article  Google Scholar 

  15. E. Celia, T. Darmanin, E.T. de Givenchy, S. Amigoni, and F. Guittard, Recent Advances in Designing Superhydrophobic Surfaces, J. Colloid Interface Sci., 2013, 402, p 1-18

    Article  Google Scholar 

  16. G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, and K.K. Varanasi, Hydrophobicity of Rare-earth Oxide Ceramics, Nat. Mater., 2013, 12(4), p 315-320

    Article  Google Scholar 

  17. D.J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, and E.N. Wang, Effect of Hydrocarbon Adsorption on the Wettability of Rare Earth Oxide Ceramics, Appl. Phys. Lett., 2014, 105(1), p 011601

    Article  Google Scholar 

  18. S. Khan, G. Azimi, B. Yildiz, and K.K. Varanasi, Role of Surface Oxygen-to-Metal Ratio on the Wettability of Rare-Earth Oxides, Appl. Phys. Lett., 2015, 106(6), p 061601

    Article  Google Scholar 

  19. S. Prakash, S. Ghosh, A. Patra, M. Annamalai, M.R. Motapothula, S. Sarkar, S.J. Tan, J. Zhunan, K.P. Loh, and T. Venkatesan, Intrinsic Hydrophilic Nature of Epitaxial Thin-Film of Rare-Earth Oxide Grown by Pulsed Laser Deposition, Nanoscale, 2018, 10(7), p 3356-3361

    Article  Google Scholar 

  20. J. Tam, G. Palumbo, U. Erb, and G. Azimi, Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits, Adv. Mater. Interfaces, 2017, 4(24), p 1700850

    Article  Google Scholar 

  21. K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki, and H. Habazaki, Facile Preparation of Self-Healing Superhydrophobic CeO2 Surface by Electrochemical Processes, Appl. Surf. Sci., 2017, 423, p 968-976

    Article  Google Scholar 

  22. Y.J. Cho, H. Jang, K.S. Lee, and D.R. Kim, Direct Growth of Cerium Oxide Nanorods on Diverse Substrates for Superhydrophobicity and Corrosion Resistance, Appl. Surf. Sci., 2015, 340, p 96-101

    Article  Google Scholar 

  23. Y. Cai, T.W. Coyle, G. Azimi, and J. Mostaghimi, Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray, Sci. Rep., 2016, 6, p 24670

    Article  Google Scholar 

  24. P. Xu, L. Pershin, J. Mostaghimi, and T.W. Coyle, Efficient One-Step Fabrication of Ceramic Superhydrophobic Coatings by Solution Precursor Plasma Spray, Mater. Lett., 2018, 211, p 24-27

    Article  Google Scholar 

  25. P. Xu, T.W. Coyle, L. Pershin, and J. Mostaghimi, Superhydrophobic Ceramic Coating: Fabrication by Solution Precursor Plasma Spray and Investigation of Wetting Behavior, J. Colloid Interface Sci., 2018, 523, p 35-44

    Article  Google Scholar 

  26. N. Zhang, F. Sun, L. Zhu, M. Planche, H. Liao, C. Dong, and C. Coddet, Measurement of Specific Enthalpy under Very Low Pressure Plasma Spray Condition, J. Therm. Spray Technol., 2012, 21(3–4), p 489-495

    Article  Google Scholar 

  27. M. Gindrat, J.L. Dorier, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Effect of Specific Operating Conditions on the Properties of LPPS Plasma Jets Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002

  28. K. Takeda, M. Ito, and S. Takeuchi, Properties of Coatings and Applications of Low Pressure Plasma Spray, Pure Appl. Chem., 1990, 62(9), p 1773-1782

    Article  Google Scholar 

  29. H.J. Kim and S.H. Hong, Comparative Measurements on Thermal Plasma Jet Characteristics in Atmospheric and Low Pressure Plasma Sprayings, IEEE Trans. Plasma Sci., 1995, 23(5), p 852-859

    Article  Google Scholar 

  30. Y. Zhao, P. Grant, and B. Cantor, Modelling and Experimental Analysis of Vacuum Plasma Spraying. Part I: Prediction of Initial Plasma Properties at Plasma Gun Exit, Modell. Simul. Mater. Sci. Eng., 2000, 8(4), p 497

    Article  Google Scholar 

  31. P. Han and X. Chen, Modeling of the Supersonic Argon Plasma Jet at Low Gas Pressure Environment, Thin Solid Films, 2001, 390(1–2), p 181-185

    Article  Google Scholar 

  32. Y. Zhao, P. Grant, and B. Cantor, Modelling and Experimental Analysis of Vacuum Plasma Spraying. Part II: Prediction of Temperatures and Velocities of Plasma Gases and Ti Particles in a Plasma Jet, Modell. Simul. Mater. Sci. Eng., 2000, 8(4), p 515

    Article  Google Scholar 

  33. C. Crowe, R. Gore, and T. Troutt, Particle Dispersion by Coherent Structures in Free Shear Flows, Part. Sci. Technol., 1985, 3(3-4), p 149-158

    Article  Google Scholar 

  34. E.K. Longmire and J.K. Eaton, Structure of a Particle-Laden Round Jet, J. Fluid Mech., 1992, 236, p 217-257

    Article  Google Scholar 

  35. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, Springer, New York, 1994

    Book  Google Scholar 

  36. A. Anwaar, L. Wei, H. Guo, and B. Zhang, Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2017, 26(3), p 292-301

    Article  Google Scholar 

  37. E. Loth, Compressibility and Rarefaction Effects on Drag of a Spherical Particle, AIAA J., 2008, 46(9), p 2219-2228

    Article  Google Scholar 

  38. S.L. Anderson and E.K. Longmire, Particle Motion in the Stagnation Zone of an Impinging Air Jet, J. Fluid Mech., 1995, 299, p 333-366

    Article  Google Scholar 

  39. P. Huang, J. Heberlein, and E. Pfender, Particle Behavior in a Two-Fluid Turbulent Plasma Jet, Surf. Coat. Technol., 1995, 73(3), p 142-151

    Article  Google Scholar 

  40. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24(1–2), p 11-23

    Google Scholar 

  41. N. Michael and B. Bhushan, Hierarchical Roughness Makes Superhydrophobic States Stable, Microelectron. Eng., 2007, 84(3), p 382-386

    Article  Google Scholar 

  42. A. Cassie and S. Baxter, Wettability of Porous Surfaces, Trans. Faraday Soc., 1944, 40, p 546-551

    Article  Google Scholar 

  43. A. Vardelle, M. Vardelle, and P. Fauchais, Influence of Velocity and Surface Temperature of Alumina Particles on the Properties of Plasma Sprayed Coatings, Plasma Chem. Plasma Process., 1982, 2(3), p 255-291

    Article  Google Scholar 

  44. R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28(8), p 988-994

    Article  Google Scholar 

  45. P. Xu, T.W. Coyle, L. Pershin, and J. Mostaghimi, Fabrication of Micro-/Nano-structured Superhydrophobic Ceramic Coating with Reversible Wettability via a Novel Solution Precursor Vacuum Plasma Spray Process, Mater. Des., 2018, 160, p 974-984

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the China Scholarship Council, Ontario Research Fund and NSERC Discovery Grants Program [Grant No. RGPIN-2015-06377 (TWC)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyun Xu.

Additional information

This article is an invited paper selected from presentations at the 2018 International Thermal Spray Conference, held on May 7-10, 2018, in Orlando, Florida, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Coyle, T.W., Pershin, L. et al. Fabrication of Superhydrophobic Ceramic Coatings via Solution Precursor Plasma Spray Under Atmospheric and Low-Pressure Conditions. J Therm Spray Tech 28, 242–254 (2019). https://doi.org/10.1007/s11666-018-0814-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0814-z

Keywords

Navigation