Skip to main content
Log in

High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10−12 S/cm before annealing up to 5.6 × 10−13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Galusek and K. Ghillanyova, Ceramics Science and Technology, Volume 2, Properties, Vol 2, Wiley-VCH, New York, 2010

    Google Scholar 

  2. A. Petzold and J. Ulbricht, Aluminiumoxid: Rohstoff - Werkstoff - Werkstoffkomponente; mit 38 Tabellen, 1st ed., Dt. Verl. für Grundstoffindustrie, 1991

  3. J. Riegel, Exhaust Gas Sensors for Automotive Emission Control, Solid State Ionics, 2002, 152-153, p 783-800

    Article  Google Scholar 

  4. C.B. Carter and M.G. Norton, Ceramic Materials: Science and Engineering, Springer, Berlin, 2007

    Google Scholar 

  5. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198

    Article  Google Scholar 

  6. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-182

    Google Scholar 

  7. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 2016, p 1-65

    Google Scholar 

  8. R. Fernandez and B. Jodoin, Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content, J. Therm. Spray Technol., 2018, 7(2), p 205

    Google Scholar 

  9. S.-M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, Alumina Thick Films as Integral Substrates Using Aerosol Deposition Method, Jpn. J. Appl. Phys., 2004, 43(8A), p 5414-5418

    Article  Google Scholar 

  10. J. Akedo, Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer, Mater. Sci. Forum, 2004, 449-452, p 43-48

    Article  Google Scholar 

  11. M. Lebedev, J. Akedo, and T. Ito, Substrate Heating Effects on Hardness of an α-Al2O3 Thick Film Formed by Aerosol Deposition Method, J. Cryst. Growth, 2005, 275(1-2), p e1301-e1306

    Article  Google Scholar 

  12. M. Schubert, J. Exner, and R. Moos, Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by the Aerosol Deposition Method, Materials, 2014, 7(8), p 5633-5642

    Article  Google Scholar 

  13. J. Exner, M. Hahn, M. Schubert, D. Hanft, P. Fuierer, and R. Moos, Powder Requirements for Aerosol Deposition of Alumina Films, Adv. Powder Technol., 2015, 26, p 1143-1151

    Article  Google Scholar 

  14. M. Schubert, M. Hahn, J. Exner, J. Kita, and R. Moos, Effect of Substrate Hardness and Surface Roughness on the Film Formation of Aerosol-Deposited Ceramic Films, Funct. Mater. Lett., 2017, 10(4), p 1750045

    Article  Google Scholar 

  15. K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274

    Article  Google Scholar 

  16. J. Akedo and M. Lebedev, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method, Jpn. J. Appl. Phys., 1999, 38(Part 1, No. 9B), p 5397-5401

    Article  Google Scholar 

  17. J. Akedo and M. Lebedev, Influence of Carrier Gas Conditions on Electrical and Optical Properties of Pb(Zr, Ti)O3 Thin Films Prepared by Aerosol Deposition Method, Jpn. J. Appl. Phys., 2001, 40(Part 1, No. 9B), p 5528-5532

    Article  Google Scholar 

  18. J. Akedo and M. Lebedev, Effects of Annealing and Poling Conditions on Piezoelectric Properties of Pb(Zr0.52, Ti0.48)O3 Thick Films formed by Aerosol Deposition Method, J. Cryst. Growth, 2002, 235(1-4), p 415-420

    Article  Google Scholar 

  19. D. Hanft, J. Exner, and R. Moos, Thick-Films of Garnet-Type Lithium Ion Conductor Prepared by the Aerosol Deposition Method: The Role of Morphology and Annealing Treatment on the Ionic Conductivity, J. Power Sources, 2017, 361, p 61-69

    Article  Google Scholar 

  20. I. Kim, J. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, D.-S. Park, C.-W. Ahn, G. Wang, and H.-J. Ahn, Electrochemical Properties of an As-Deposited LiFePO4 Thin Film Electrode Prepared by Aerosol Deposition, J. Power Sources, 2013, 244, p 646-651

    Article  Google Scholar 

  21. S. Iwasaki, T. Hamanaka, T. Yamakawa, W.C. West, K. Yamamoto, M. Motoyama, T. Hirayama, and Y. Iriyama, Preparation of Thick-Film LiNi1/3Co1/3Mn1/3O2 Electrodes by Aerosol Deposition and Its Application to All-Solid-State Batteries, J. Power Sources, 2014, 272, p 1086-1090

    Article  Google Scholar 

  22. R. Inada, K. Shibukawa, C. Masada, Y. Nakanishi, and Y. Sakurai, Characterization of As-Deposited Li4Ti5O12 Thin Film Electrode Prepared by Aerosol Deposition Method, J. Power Sources, 2014, 253, p 181-186

    Article  Google Scholar 

  23. L.-S. Wang, C.-X. Li, G.-R. Li, G.-J. Yang, S.-L. Zhang, and C.-J. Li, Enhanced Sintering Behavior of LSGM Electrolyte and Its Performance for Solid Oxide Fuel Cells Deposited by Vacuum Cold Spray, J. Eur. Ceram. Soc., 2017, 37(15), p 4751-4761

    Article  Google Scholar 

  24. J.-J. Choi, C.-W. Ahn, J.-W. Kim, J. Ryu, B.-D. Hahn, W.-H. Yoon, and D.-S. Park, Anode-Supported Type SOFCs Based on Novel Low Temperature Ceramic Coating Process, J. Korean Ceram. Soc., 2015, 52(5), p 338-343

    Article  Google Scholar 

  25. H. Bae, J. Choi, and G.M. Choi, Electrical Conductivity of Gd-Doped Ceria Film Fabricated by Aerosol Deposition Method, Solid State Ionics, 2013, 236, p 16-21

    Article  Google Scholar 

  26. M. Bektas, D. Hanft, D. Schönauer-Kamin, T. Stöcker, G. Hagen, and R. Moos, Aerosol-Deposited BaFe0.7Ta0.3O3-δ for Nitrogen Monoxide and Temperature-Independent Oxygen Sensing, J. Sens. Sens. Syst., 2014, 3(2), p 223-229

    Article  Google Scholar 

  27. K. Sahner, M. Kaspar, and R. Moos, Assessment of the Novel Aerosol Deposition Method for Room Temperature Preparation of Metal Oxide Gas Sensor Films, Sens. Actuators B, 2009, 139(2), p 394-399

    Article  Google Scholar 

  28. T. Stöcker, J. Exner, M. Schubert, M. Streibl, and R. Moos, Influence of Oxygen Partial Pressure During Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2, Materials, 2016, 9(4), p 227

    Article  Google Scholar 

  29. J.-J. Choi, J. Ryu, B.-D. Hahn, W.-H. Yoon, B.-K. Lee, J.-H. Choi, and D.-S. Park, Oxidation Behavior of Ferritic Steel Alloy Coated with LSM–YSZ Composite Ceramics by Aerosol Deposition, J. Alloys Compd., 2010, 492(1-2), p 488-495

    Article  Google Scholar 

  30. H. Kim, S. Yang, R.C. Pawar, S.-H. Ahn, and C.S. Lee, Role of TiO2 Nanoparticles in the Dry Deposition of NiO Micro-sized Particles at Room Temperature, Ceram. Int., 2015, 41(4), p 5937-5944

    Article  Google Scholar 

  31. J. Exner, M. Schubert, D. Hanft, T. Stöcker, P. Fuierer, and R. Moos, Tuning of the Electrical Conductivity of Sr(Ti, Fe)O3 Oxygen Sensing Films by Aerosol Co-deposition with Al2O3, Sens. Actuators B, 2016, 230, p 427-433

    Article  Google Scholar 

  32. J.-J. Choi, B.-D. Hahn, J. Ryu, W.-H. Yoon, B.-K. Lee, and D.-S. Park, Preparation and Characterization of Piezoelectric Ceramic–Polymer Composite Thick Films by Aerosol Deposition for Sensor Application, Sens. Actuators A, 2009, 153(1), p 89-95

    Article  Google Scholar 

  33. J.-H. Park, J. Akedo, and M. Nakada, Surface Plasmon Resonance in Novel Nanocomposite Gold/Lead Zirconate Titanate Films Prepared by Aerosol Deposition Method, Jpn. J. Appl. Phys., 2006, 45(9B), p 7512-7515

    Article  Google Scholar 

  34. B.B. Sinha, K.C. Chung, S.H. Jang, D.S. Park, and B.-D. Hahn, Fabrication of Magnesium Diboride Thin Films by Aerosol Deposition, Prog. Supercond., 2011, 13(2), p 122-126

    Google Scholar 

  35. H.-J. Kim and S.-M. Nam, Effects of Heat Treatment on the Dielectric Properties of Aerosol-Deposited Al2O3-Polyimide Composite Thick Films for Room-Temperature Fabrication, J. Ceram. Process. Res., 2009, 10(6), p 817-822

    Google Scholar 

  36. D.-W. Lee, H.-J. Kim, and S.-M. Nam, Effects of Starting Powder on the Growth of Al2O3 Films on Cu Substrates Using the Aerosol Deposition Method, J. Korean Phys. Soc., 2010, 57(41), p 1115-1121

    Article  Google Scholar 

  37. N. Leupold, M. Schubert, J. Kita, and R. Moos, Influence of High Temperature Annealing on the Dielectric Properties of Alumina Films Prepared by the Aerosol Deposition Method, Funct. Mater. Lett., 2018, 11(2), 1850022, https://doi.org/10.1142/S1793604718500224

    Article  Google Scholar 

  38. Y. Sato, Y. Uemichi, K. Nishikawa, and S. Yoshikado, Fabrication of Al2O3 Films Using Aerosol Deposition Method and Their Characterization, IOP Conf. Ser. Mater. Sci. Eng., 2011, 18(9), p 92056

    Article  Google Scholar 

  39. B.-D. Hahn, D.-S. Park, J.-J. Choi, W.-H. Yoon, J. Ryu, and D.-Y. Kim, Effects of Zr/Ti Ratio and Post-annealing Temperature on the Electrical Properties of Lead Zirconate Titanate (PZT) Thick Films Fabricated by Aerosol Deposition, J. Mater. Res., 2008, 23(01), p 226-235

    Article  Google Scholar 

  40. J.-G. Lee, Y.-H. Cha, D.-Y. Kim, J.-H. Lee, T.-K. Lee, W.-Y. Kim, J. Park, D. Lee, S.C. James, S.S. Al-Deyab, and S.S. Yoon, Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition, J. Therm. Spray Technol., 2015, 24(6), p 1046-1051

    Article  Google Scholar 

  41. A.K. Jonscher, Dielectric Relaxation in Solids, J. Phys. D Appl. Phys., 1999, 32(14), p R57-R70

    Article  Google Scholar 

  42. J. Öijerholm, J. Pan, and B. Jönsson, Influence of Grain-Size on Ionic Conductivity of Pure and Dense α-Al2O3 in the Temperature Range 400–1000 °C, Mater. Sci. Forum, 2004, 461-464, p 865-874

    Article  Google Scholar 

  43. O.T. Özkan and A.J. Moulson, The Electrical Conductivity of Single-Crystal and Polycrystalline Aluminium Oxide, J. Phys. D Appl. Phys., 1970, 3(6), p 983-987

    Article  Google Scholar 

  44. J. Kita, A. Engelbrecht, F. Schubert, A. Groß, F. Rettig, and R. Moos, Some Practical Points to Consider with Respect to Thermal Conductivity and Electrical Resistivity of Ceramic Substrates for High-Temperature Gas Sensors, Sens. Actuators B, 2015, 213, p 541-546

    Article  Google Scholar 

  45. F.G. Will, H.G. deLorenzi, and K.H. Janora, Conduction Mechanism of Single-Crystal Alumina, J. Am. Ceram. Soc., 1992, 75(2), p 295-304

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the following persons and organizations for supporting this work: The Bavarian research foundation (Bayerische Forschungsstiftung, BFS, grant AZ-1055-12) for funding. A. Mergner (Department for Functional Materials) and M. Heider (BIMF) for SEM sample preparation and characterization and the Department of Metals and Alloys, (Prof. Glatzel) for XRD analyses (all University of Bayreuth).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Moos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, M., Leupold, N., Exner, J. et al. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities. J Therm Spray Tech 27, 870–879 (2018). https://doi.org/10.1007/s11666-018-0719-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0719-x

Keywords

Navigation