Skip to main content
Log in

Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene or UHMWPE is an extremely difficult material to coat with, as it is rubbery and chemically very inert. The Cold Spray process appears to be a promising alternative processing technique but polymers are in general difficult to deposit using this method. So, attempts to develop UHMWPE coatings were made using a downstream injection cold spray technique incorporating a few modifications. A conventional cold spray machine yielded only a few deposited particles of UHMWPE on the substrate surface, but with some modifications in the nozzle geometry (especially the length and inner geometry) a thin coating of 45 μm on Al substrate was obtained. Moreover, experiments with the addition of fumed nano-alumina to the feedstock yielded a coating of 1-4 mm thickness on Al and polypropylene substrates. UHMWPE was seen to be melt crystallized during the coating formation, as can be seen from the differential calorimetry curves. Influence of nano-ceramic particles was explained by observing the creation of a bridge bond between UHMWPE particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Gwt.%:

Weight percentage of guest particles

D :

Average diameter of host particle (m)

d :

Average diameter of guest particles (m)

ρD :

Density of host particles (kg/m3)

ρd :

Density of the guest particles (kg/m3)

ΔE :

Energy required for melting one particle (kg m2/s2)

ΔH :

Melting enthalpy of the crystal (m2/s2)

\(X_{\text{c}}\) :

Crystallinity of the nascent powder

C p :

Heat capacity (m2/s2/K)

m :

Mass of the UHMWPE particle (kg)

r :

Radius of the UHMWPE particle (m)

E c :

Kinetic energy of the UHMWPE particle (kg m2/s2)

V :

Velocity of the UHMWPE particle (m/s)

ΔT :

Temperature change (K)

References

  1. S.P. Sitaram, J.O. Stoffer, and T.J. O’Keefe, Application of Conducting Polymers in Corrosion Protection, J. Coat. Technol., 1997, 69(866), p 65-69

    Article  Google Scholar 

  2. Y.Q. Wang, L.P. Huang, W.L. Liu, and J. Li, The Blast Erosion Behaviour of Ultrahigh Molecular Weight Polyethylene, Wear, 1998, 218(1), p 128-133

    Article  Google Scholar 

  3. L.L. Lin, T.H. Ho, and C.S. Wang, Synthesis of Novel Trifunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Electronic Application, Polymer, 1997, 38(8), p 1997-2003

    Article  Google Scholar 

  4. G. Scott, Polymers and the Environment, Royal Society of Chemistry, Cambridge, 1999

    Google Scholar 

  5. A.G. Mikos, G. Sarakinos, J.P. Vacanti, R.S. Langer, and L.G. Cima, U.S. Patent No. 5,514,378, U.S. Patent and Trademark Office, Washington, DC, 1996.

  6. S.M. Kurtz, The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, Academic Press, New York, 2004

    Book  Google Scholar 

  7. D.C. Prevorsek, Y.D. Kwon, and H.B. Chin, Analysis of the Temperature Rise in the Projectile and Extended Chain Polyethylene Fiber Composite Armor During Ballistic Impact and Penetration, Polym. Eng. Sci., 1994, 34(2), p 141-152

    Article  Google Scholar 

  8. T. Deplancke, O. Lame, F. Rousset, I. Aguili, R. Seguela, and G. Vigier, Diffusion Versus Cocrystallization of Very Long Polymer Chains at Interfaces: Experimental Study of Sintering of UHMWPE Nascent Powder, Macromolecules, 2013, 47(1), p 197-207

    Article  Google Scholar 

  9. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 159(9), p 49-51

    Google Scholar 

  10. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  Google Scholar 

  11. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2003, 12(2), p 265-281

    Article  Google Scholar 

  12. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1), p 222-230

    Article  Google Scholar 

  13. S.L. Coguill, S.L. Galbraith, D.L. Tuss, M. Ivosevic, and L.C. Farrar, U.S. Patent Application 13/506, 215, 2012.

  14. Y. Xu and I.M. Hutchings, Cold Spray Deposition of Thermoplastic Powder, Surf. Coat. Technol., 2006, 201(6), p 3044-3050

    Article  Google Scholar 

  15. E. Leivo, T. Wilenius, T. Kinos, P. Vuoristo, and T. Mäntylä, Properties of Thermally Sprayed Fluoropolymer PVDF, ECTFE, PFA and FEP Coatings, Prog. Org. Coat., 2004, 49(1), p 69-73

    Article  Google Scholar 

  16. G. Zhang, W.Y. Li, M. Cherigui, C. Zhang, H. Liao, J.M. Bordes, and C. Coddet, Structures and Tribological Performances of PEEK (Poly-Ether-Ether-Ketone)-Based Coatings Designed for Tribological Application, Prog. Org. Coat., 2007, 60(1), p 39-44

    Article  Google Scholar 

  17. C.R. Lima, N.F. de Souza, and F. Camargo, Study of Wear and Corrosion Performance of Thermal Sprayed Engineering Polymers, Surf. Coat. Technol., 2013, 220, p 140-143

    Article  Google Scholar 

  18. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  19. Z. Bartczak, P.F. Beris, K. Wasilewski, A. Galeski, and P.J. Lemstra, Deformation of the Ultra High Molecular Weight Polyethylene Melt in the Plane-Strain Compression, J. Appl. Polym. Sci., 2012, 125(6), p 4155-4168

    Article  Google Scholar 

  20. A.S. Alhulaifi, G.A. Buck, and W.J. Arbegast, Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating, J. Therm. Spray Technol., 2012, 21(5), p 852-862

    Article  Google Scholar 

  21. A.M. Wrobel, M. Kryszewski, W. Rakowski, M. Okoniewski, and Z. Kubacki, Effect of Plasma Treatment on Surface Structure and Properties of Polyester Fabric, Polymer, 1978, 19(8), p 908-912

  22. P. Bhimaraj, D. Burris, W.G. Sawyer, C.G. Toney, R.W. Siegel, and L.S. Schadler, Tribological Investigation of the Effects of Particle Size, Loading and Crystallinity on Poly (Ethylene) Terephthalate Nanocomposites, Wear, 2008, 264(7), p 632-637

    Article  Google Scholar 

  23. C. Liu, L. Ren, R.D. Arnell, and J. Tong, Abrasive Wear Behavior of Particle Reinforced Ultrahigh Molecular Weight Polyethylene Composites, Wear, 1999, 225, p 199-204

    Article  Google Scholar 

  24. E. Kontou and M. Niaounakis, Thermo-mechanical Properties of LLDPE/SiO2 Nanocomposites, Polymer, 2006, 47(4), p 1267-1280

    Article  Google Scholar 

  25. J. Yang, A. Sliva, A. Banerjee, R.N. Dave, and R. Pfeffer, Dry Particle Coating for Improving the Flowability of Cohesive Powders, Powder Technol., 2005, 158(1), p 21-33

    Article  Google Scholar 

  26. Technical Information, Degussa AG, Frankfurt, TI 1283.

  27. W. Lortz, G. Perlet, W. Will, and S. Reitz, U.S. Patent No. 7,834,076, U.S. Patent and Trademark Office, Washington, DC, 2010.

  28. H.D. Chanzy, E. Bonjour, and R.H. Marchessault, Nascent Structures During the Polymerization of Ethylene, Colloid Polym. Sci., 1974, 252(1), p 8-14

    Article  Google Scholar 

  29. S. Rastogi, D.R. Lippits, G.W. Peters, R. Graf, Y. Yao, and H.W. Spiess, Heterogeneity in Polymer Melts from Melting of Polymer Crystals, Nat. Mater., 2005, 4(8), p 635-641

    Article  Google Scholar 

  30. D. Jauffrès, O. Lame, G. Vigier, and F. Doré, How Nascent Structure of Semicrystalline Polymer Powders Enhances Bulk Mechanical Properties, Macromolecules, 2008, 41(24), p 9793-9801

    Article  Google Scholar 

  31. J. Brandrup, E.H. Immergut, A. Abe, and D.R. Bloch, Ed., Polymer Handbook, Vol. 89, Wiley, New York, 1999

    Google Scholar 

  32. K. Ravi, Y. Ichikawa, O. Ogawa, T. Deplanke, O. Lame, and J.Y. Cavaille, Mechanistic Study and Characterization of Cold Sprayed Ultra High Molecular Weight Polyethylene-Nano Ceramic Composite Coating, International Thermal Spray Conference and Exposition (ITSC), ASM, Materials Park, 2015.

Download references

Acknowledgments

The authors are indebted to Ticona (Oberhausen, Germany) for the generous supply of the UHMWPE sample together with its molecular characteristics. One of us, Tiana Deplancke acknowledges ONR (USA) for its financial support through the NICOP project. Authors would also like to thank JTSS internship program for financing and supporting the internship, carried out at Iwate Industrial Research Institute. This work was partly supported by the JSPS Core-to-Core Program, A. Advanced Research Networks, “International research core on smart layered materials and structures for energy saving.” Authors would also like to thank Prof. Hidemasa Takana from Institute of Fluid Science (Tohoku University) for his valuable insights to understanding the flow dynamics within the nozzles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesavan Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, K., Ichikawa, Y., Deplancke, T. et al. Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique. J Therm Spray Tech 24, 1015–1025 (2015). https://doi.org/10.1007/s11666-015-0276-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0276-5

Keywords

Navigation